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ABSTRACT

We consider the fast and accurate numerical solution of the Poisson-Boltzmann equa-
tion (PBE), a three-dimensional second-order nonlinear elliptic parametrized partial
differential equation (PPDE), which is ubiquitous in biophysics. It is an implicit sol-
vent continuum model for calculating the electrostatic potential and energies of ionic
solvated biomolecules. However, its numerical solution encounters severe challenges
arising from: (i) strong singularities caused by the singular source terms and described
by Dirac delta distributions; (ii) rapid nonlinearities caused by the exponential non-
linear terms; (iii) three spatial dimensions which lead to a high number of degrees of
freedom in the resultant algebraic system of equations of size O(105)−O(106) resulting
from large domains, necessary to accommodate large sizes of macromolecules and for
accurate approximation of boundary conditions due to the slow polynomial decay of the
electrostatic potential in the form of 1/‖x̄‖ as x̄→∞; and (iv) computationally expen-
sive PBE simulations, for example, the Brownian dynamics simulations, whereby the
PBE requires to be solved multiple times for a large number of system configurations.
In this thesis, we for the first time eliminate the effect of strong singularities by applying
the novel range-separated (RS) canonical tensor format [15, 17] for the construction of
an efficient regularization scheme for the PBE. The RS tensor format allows to derive
a smooth approximation to the Dirac delta distribution introduced in [85] in order to
construct a regularized PBE (RPBE) model which computes smooth long-range elec-
trostatic potentials, thereby circumventing the building of numerical approximations to
the singular solution, resulting in increased accuracy. Consequently, the main compu-
tational benefits are due to the localization of the regularized Dirac delta distributions
within the molecular region and automatic maintaining of the continuity in the Cauchy
data on the solute-solvent interface [85]. The total electrostatic potential is obtained
by adding the regularized long-range solution to the directly precomputed short-range
potential component determined from the RS splitting of the Newton potential. Fur-
thermore, to accelerate the computations resulting from challenges (iii) and (iv), we
for the first time employ the reduced basis method (RBM) to substantially reduce the
computational complexity by constructing a surrogate reduced order model (ROM)
of typically low dimension, whose solution accurately approximates the original PBE.
Moreover, the discrete empirical interpolation (DEIM), is applied to the parametric
nonaffine Dirichlet boundary conditions (of Yukawa potential type) in order to signifi-
cantly reduce the computational complexity of the nonaffine function by interpolation,
whereby only a few entries are computed. On examples of several biomolecules, we
demonstrate in the numerical experiments, the accuracy and efficacy of the RBM ap-
proximation for the nonlinear RPBE and the corresponding computational savings over
the classical PBE.
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ZUSAMMENFASSUNG

Wir beschäftigen uns mit der schnellen und genauen numerischen Lösung der Poisson-
Boltzmann-Gleichung (PBG), einer dreidimensionalen nichtlinearen elliptischen para-
metrischen partiellen Differentialgleichung (PPDGL) zweiter Ordnung, die in der Bio-
physik allgegenwärtig ist. Diese ist ein implizites kontinuumsmechanisches Modell um
das elektrostatische Potential und die Energie der ionisch gelösten Biomoleküle zu
berechnen. Allerdings treten schwierige Herausforderungen beim numerischen Lösen
auf: (i) starke Singularitäten, die durch den singulären Quellterm, der durch die Dirac
Deltaverteilung beschrieben wird, entstehen; (ii) schnelle Nichtlinearitäten, die durch
den exponentiellen, nichtlinearen Term hervorgerufen werden; (iii) drei räumliche Di-
mensionen, die zu einer Vielzahl an Freiheitsgraden in dem resultierenden algebrais-
chen Gleichungssystem der Größe O(105) − O(106) führen, welches aus einem großen
Gebiet resultiert, das nötig ist um große Makromoleküle unterzubringen und um die
Randbedingungen aufgrund eines langsamen polynomiellen Abfalls des elektrostatis-
chen Potentials in Gestalt von 1/‖x̄‖ als x̄ → ∞ genau approximieren zu können;
und (iv) rechenintensive PBG Simulationen, wie zum Beispiel Brownsche Dynamik-
simulationen, bei denen die PBG mehrfach für viele Systemeinstellungen gelöst wer-
den muss. In dieser Dissertation werden wir zum ersten Mal den Effekt der starken
Singularitäten entfernen, in dem wir das neuartige bereichstrennende kanonische Ten-
sorformat [15, 17] zur Konstruktion eines effizienten Regularisierungsschemas für die
PBG anwenden. Mit diesem Tensorformat kann eine glatte Approximation der Dirac
Deltaverteilung, die in [85] eingeführt wurde, hergeleitet werden, um ein regularisiertes
PBG (RPBG) Modell zu konstruieren, das glatte elektrostatische Potentiale berech-
net und dabei verhindert, dass numerische Approximationen zur singulären Lösung
erstellt werden, was zu einer erhöhten Genauigkeit führt. Folglich sind die wichtigsten
Rechenvorteile darauf zurückzuführen, dass die regularisierte Dirac Deltaverteilung auf
das molekulare Gebiet beschränkt ist und die Stetigkeit in den Cauchy-Daten auf dem
Lösungsmittel-Interface [85] automatisch erhalten werden. Das gesamte elektrostatis-
che Potential wird dann durch Hinzufügen der regularisierten weitreichenden Lösung
zur vorher berechneten kurzzeitigen Potentialkomponente, die durch das bereichstren-
nende Aufteilen des Newton-Potentials bestimmt wird, berechnet. Um die Berechnun-
gen, die aus den Herausforderungen (iii) und (iv) resultieren, außerdem zu beschleu-
nigen, haben wir zum ersten Mal die reduzierte Basen Methode (RBM) angewandt,
um im Wesentlichen den Rechenaufwand zu reduzieren. Dafür wird ein Modell re-
duzierter Ordnung (ROM) konstruiert, dessen Lösung die originale PBG exakt ap-
proximiert. Darüber hinaus wird die diskrete empirische Interpolation (DEIM) auf
die parametrischen nicht-affinen Dirichlet-Randbedingungen (von Yukawa Potentialart)
angewandt um den Rechenaufwand der nicht-affinen Funktion durch Interpolation zu
verringern, wobei nur wenige Einträge berechnet werden. Anhand von Beispielen ver-
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Zusammenfassung

schiedener Biomoleküle werden wir die Genauigkeit und Effizienz der RBM Approx-
imation für die nichtlineare RPBG und die zugehörigen rechnerischen Einsparungen
verglichen mit der klassischen PGB aufzeigen.
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CHAPTER 1

INTRODUCTION

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Contributions and Limitations . . . . . . . . . . . . . . . . . 4

1.1. Motivation

Electrostatic interactions play a significant role in biological processes involving macro-
molecules such as proteins and nucleic acids in solutions. These interactions help to
understand and determine the biological structure, their dynamics, and function of
biomolecules. For instance, these long-range interactions are responsible for protein
folding and stability, enzyme catalysis, recognition of substrates by receptors, and pH-
induced conformational changes [34, 41, 71, 107]. Figure 1.1 shows the structure of the
Chymotrypsin inhibitor 2 (a protein found in the albumin fraction of seeds from the
Hyproly strain of barley [76]) before and after folding. Note that the folding, which
gives the protein its 3-dimensional structure, is due to the electrostatic interactions of
the amino acids [48, 107].

Efficient and accurate modeling of these interactions hitherto remains a great chal-
lenge in computational biology due to the complexity of biomolecular systems dom-
inated by the effects of solvation on biomolecular processes and by the long-range
intermolecular interactions. Precise and faster calculation of electrostatic interaction
between molecules has been a challenge until recent times. Techniques based on the
Ewald summation method, such as the particle mesh Ewald (PME) technique, are used
to efficiently calculate the electrostatic interactions, for example, the interaction energy
and the interparticle forces, of a periodic or a pseudoperiodic system [137, 146]. How-
ever, these approaches compute the electrostatic potential only at the atomic positions
and, therefore, the Ewald sums need to be meshed up over a 3D Cartesian grid onto
an n× n× n mesh for typical biomolecular simulations [38].

The Poisson-Boltzmann equation (PBE) is one of the physically most profound ap-
proaches to calculate the electrostatic potential within and around a solvated biomolecule.
However, the following challenges are a bottleneck towards the application of the PBE
to biophysical modeling, as far as efficiency and accuracy are concerned.
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1. Introduction

Figure 1.1.: Protein Chymotrypsin inhibitor 2 before and after folding, (photo courtesy
of [2]).

First, the strong singularities caused by the pointwise nuclei and described by the
Dirac delta distributions indicate that the numerical solution is not continuous and
does not belong to H1(Ω), and also introduce significant errors in the numerical ap-
proximation of the PBE. The existing PBE solution decomposition techniques apply
the splitting of the Laplace operator at the solute-solvent interface using the dielectric
coefficients as the cutoff function in order to construct a regularized PBE. However,
this approach leads to discontinuities of the solution at the interface, resulting from the
truncation of the long-range potential component, thereby creating the need to apply
interface conditions for the potential function.

Secondly, a typical macromolecule consists of approximately from O(103) to O(106)
atoms (i.e., point charges in the PBE). Coupled with the fact that the electrostatic
potential exhibits a slow polynomial decay in 1/‖x̄‖, large computational domains are
necessary for an accurate numerical approximation of boundary conditions, which can
be prohibitively expensive and an onerous task to the current computing resources.

Thirdly, incorporating solutions of the full PBE in a typical Brownian dynamics
(BD) or molecular dynamics (MD) simulation for molecular association or dissociation
could involve O(107) of steps [108]. For an efficient performance of the propagation of
molecules and atoms, a single solution of the PBE has to be completed within a split
second on the modern PC. Last but not least, the exponential rapid nonlinearities, dis-
continuous coefficients and infinite domain also contribute essentially to the numerical
complexity of the PBE.

This thesis addresses the issue of strong singularities by applying the profound advan-
tage of the range-separated (RS) tensor format introduced in [17] and the RS decom-
position of the Dirac delta distribution [85] to the PBE in order to efficiently construct
a regularized PBE which is free from the solution singularities. In this regard, we split
the long- and short-range components of a multiparticle system in the respective atomic
volume rather than at the interface between solute (molecule) and the solvent as done
by the existing solution decomposition techniques for the PBE.

The reduced basis method (RBM) and the discrete empirical interpolation method
(DEIM), on the other hand, are used to reduce the computational complexity of the
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PBE by constructing an accurate surrogate reduced order model (ROM), and of the
ROM by interpolating the nonaffine (in parameter) Dirichlet boundary conditions,
thereby greatly accelerating the numerical computations of the PBE in a multi-query
context (or in multi-parameter simulations).

1.2. Outline of the Thesis

The thesis is structured as follows: In Chapter 2, we first briefly study the significance
of the PBE in biophysics. Secondly, we demonstrate the derivation of the PBE model
from Gauss’s law, the divergence theorem (or Gauss’s theorem) and the Boltzmann
distribution law, respectively. This is followed by the analysis of the existence and
uniqueness of the PBE solutions for both the linearized and the nonlinear models.
Thirdly, applications of the electrostatic potential are briefly mentioned and the finite
difference discretization of the PBE is provided. Lastly, we highlight the recent advances
regarding the regularization techniques for the PBE.

In Chapter 3, we provide an introduction to tensor methods by first outlining the ba-
sic concepts of multilinear algebra, which provide the foundation for the rank-structured
tensor representations of function related tensors. We also provide some basics of ten-
sor numerical methods, including the canonical-to-Tucker (C2T) algorithm and the
generation of a canonical tensor representation for the Newton kernel. Then we dis-
cuss the range-separated tensor format, which was developed and analyzed in [15, 17]
and describe the construction of the RS tensor format for efficient representation of
the collective electrostatic potential of multiparticle systems of general type. The RS
tensor format represents the total potential of a large number of charged particles as
a sum of a low-rank canonical tensors representing the long-range part of the collec-
tive potential (with a rank only logarithmically depending on the number of particles)
and a cumulative canonical tensor (CCT) representing the short-range potential of all
particles.

Chapter 4 provides the main contribution of this thesis to the PBE theory as far as
the solution decomposition techniques for the PBE are concerned. We first construct
an efficient regularization scheme for the Poisson equation (PE) by the RS tensor for-
mat as a proof of concept [18]. We then extent this efficient regularization approach to
both the linearized PBE (LPBE) and the nonlinear PBE (NPBE) in order to construct
the corresponding regularized LPBE (LRPBE) and the NRPBE models [99]. In the
LRPBE and NRPBE, we solve for the smooth long-range electrostatic potential, by
applying only the smooth component of the source terms, obtained by the RS decom-
position of the Dirac delta distribution [85]. We finalize this chapter by proving that
the electrostatic solvation free interaction energy and forces (for solvated biomolecules)
do not depend on the short-range component of the electrostatic potential, but they are
completely determined by the long-range electrostatic potential component [99]. Note
that the results for the interaction energy derived from the free-space potential, were
introduced and proved in [17].

Chapter 5 provides another main contribution of this thesis to the PBE theory. We
begin by studying the basics of the reduced basis methods. Then we apply the RBM
to the classical linearized PBE as proof of concept and highlight some of the com-
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putational difficulties associated with the construction of an efficient reduced order
model and how to circumvent these difficulties using the discrete empirical interpola-
tion method (DEIM). The a posteriori error estimation for the RB approximation is
discussed together with the associated computational challenges [16]. We then dive into
the study of the numerical approach of the regularized nonlinear PBE via the Taylor
series expansion of the exponential nonlinear term in order to obtain a linear RPBE
system at each iteration step [97, 98]. The RBM technique is applied to the linearized
RPBE and the computational complexity of the resultant regularized ROM is investi-
gated and resolved via the DEIM. We finalize this section by applying the RBM to the
classical nonlinear PBE in order to demonstrate the computational differences between
the two models, and the efficacy of the RPBE.

Chapter 6 provides the numerical tests and examples for both the classical and the
regularized PBE models. We start off by providing the numerical results for the classical
linearized PBE. Then, we demonstrate the accuracy of the nonlinear RPBE (NRPBE)
model discretized on fine 3D grids over the classical PBE by its ability to capture the
solution singularities accurately. The RBM is then applied to both the NRPBE and the
classical NPBE, and numerical differences are highlighted. The computational runtimes
for the two models are analyzed and conclusions made.

1.3. Thesis Contributions and Limitations

The principal goal of this thesis is the development of a new approach to the fast and
accurate numerical solution of the PBE in order to rapidly accelerate its simulations
for varying parameter values and/or other system configurations. First, this thesis
contributes to the further improvement of the current PBE mathematical analysis as far
as solution decomposition or regularization is concerned. This is realized by extending
the results of the RS tensor format for multiparticle modeling [17] and for the splitting
of the discretized Dirac delta distributions [85] to the PBE in order to construct the
state of the art RS tensor-based regularized PBE model. This results in the efficient
splitting of the electrostatic potential into two components, the short-range and long-
range, within the molecular and the solvent domains, respectively.

The novelty of this technique is twofold: first, the tensor splitting is accomplished
in the respective atomic volumes of the biomolecule, rather than through some cutoff
function of the Laplacian operator at the solute-solvent interface as currently done in the
existing solution decomposition techniques. Hence, the singular potential component
does not contribute to the jump conditions. Secondly, by using the regularized source
terms in the RPBE, the numerical approximation to the singular sources is avoided,
thereby increasing the accuracy of the PBE solution, which is a major contribution
towards its efficient regularization in the PBE theory, and also the main contribution
of this thesis.

Secondly, in this thesis, we prove that the electrostatic solvation free interaction
energy and forces do not depend on the short-range component of the electrostatic
potential. This is the consequence of the corresponding properties for the free-space
electrostatic interaction energy derived and verified in [15, 17]. The reason is that
the short-range potential components, characterized by cusps, do not communicate (or
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interact) with their neighbours due to their localization (effective local supports) in
the atomic volumes/regions. Instead, the energy is entirely driven by the long-range
electrostatic potential. The regularized PBE model is, therefore, fundamental in the
efficient computation of electrostatic energies and forces.

Thirdly, we have applied a more efficient numerical method of solving the high-
fidelity full order model of the nonlinear regularized PBE (NRPBE), which is based on
first linearization via the Taylor series truncation of the nonlinear term, followed by
discretization. This approach avoids the computation of the Jacobian of a huge matrix
and also converges much faster than the standard Newton iteration.

Lastly, in this thesis, we for the very first time apply the RBM techniques, which
is a parametrized model order reduction tool, and DEIM to both the classical and
the regularized PBE models in biomolecular simulation in order to provide greatly
reduced computational costs in terms of storage and time due to the construction of
a small reduced order model (ROM) from the high-fidelity full order model (FOM).
However, the differences as far as the accuracy and efficiency are concerned, are quite
conspicuous, whereby the regularized PBE model facilitates the construction of a ROM
of lower dimension but of higher accuracy than that of the classical PBE because of
the absence of the singularities which impede the reduction process.

The benefits of the RBM, or MOR in general, become obvious when the same problem
has to be solved for a large number of parameter values. In this thesis, the break-even
point is about 10, and thus, the RBM becomes very effective if dozens or more parameter
configurations need to be evaluated.

However, this thesis is limited in the following ways: first, we do not provide de-
tailed numerical experiments to corroborate with the actual energies of well-known
biomolecules. This requires thorough investigations and provision of supporting litera-
ture, which is not in the scope of this thesis; secondly, the error bounds for the RBM
are still a critical issue for the PBE. This is because the coefficient matrix A of the
PBE system Au = b has small eigenvalues of the order of O(10−2), which impede the
construction of tight error bounds. In this thesis, we use the norm of the residual as
the corresponding a posteriori error estimator.

5





CHAPTER 2

THE POISSON-BOLTZMANN EQUATION

THEORY

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Electrostatic interactions in biomolecular systems . . . . . . . . . . 8

2.2.1 Implicit solvent methods . . . . . . . . . . . . . . . . . . . . 9

2.2.2 The Poisson-Boltzmann equation . . . . . . . . . . . . . . . 12

2.2.3 Analytical solutions of the PBE . . . . . . . . . . . . . . . . 16

2.2.4 Numerical solutions of the PBE . . . . . . . . . . . . . . . . 17

2.2.4.1 Finite difference methods (FDM) . . . . . . . . . 17

2.2.4.2 Boundary element methods (BEM) . . . . . . . . 18

2.2.4.3 Finite element methods (FEM) . . . . . . . . . . . 18

2.2.4.4 Multilevel solvers . . . . . . . . . . . . . . . . . . 19

2.2.4.5 Parallel methods . . . . . . . . . . . . . . . . . . . 19

2.3 Theory for the PBE solution . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Existence and uniqueness theorems for the LPBE . . . . . . 21

2.3.2 Existence and uniqueness theorems for the NPBE . . . . . . 23

2.4 Applications of the electrostatic potential . . . . . . . . . . . . . . . 26

2.4.1 Similarity index (SI) analysis of proteins . . . . . . . . . . . 26

2.4.2 Brownian dynamics simulation (BD) and ionic strength de-
pendence on reaction rates . . . . . . . . . . . . . . . . . . . 27

2.5 Discretization of the classical LPBE . . . . . . . . . . . . . . . . . . 28

2.5.1 Finite difference discretization . . . . . . . . . . . . . . . . . 28

2.5.2 Calculation of dielectric constant distribution and kappa
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.3 Calculation of charge densities . . . . . . . . . . . . . . . . . 29

2.5.4 Dirichlet boundary conditions . . . . . . . . . . . . . . . . . 29

2.6 Recent advances in the Poisson-Boltzmann theory . . . . . . . . . . 30

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7



2. The Poisson-Boltzmann theory

2.1. Introduction

In this chapter, we begin in Section 2.2 by providing a general overview of electro-
static interactions in biomolecules and their significance in biological processes and
why the Poisson-Boltzmann equation (PBE) is best suited for the numerical model-
ing and approximation. We then dive into the mathematical formulation of the PBE
in Section 2.2.2 followed by the various applications of the electrostatic potential in
Section 2.4. In Section 2.5, we provide a brief description of the classical PBE dis-
cretization using finite difference methods. Last but not least, we provide an overview
of the recent advances in the PBE theory in Section 2.6, whereby the PBE is treated
as an interface problem and highlight some of the solution decomposition techniques
available in the literature. Consequently, we point out the drawbacks inherent in these
techniques and propose the new regularization scheme based on the range-separated
tensor format, which is the main focus in this thesis.

2.2. Electrostatic interactions in biomolecular systems

Biomolecular simulation is ubiquitous in biology and has gained popularity as a bio-
physical method for understanding various fundamental biological functions, dynamics
and structures of biomolecules, enzyme catalysis, molecular recognition, and biomolec-
ular encounter or association rates [48, 112]. In principle, the energetic properties of
a biomolecule are ascertained by combining both the short- and long-range forces. On
the one hand, short-range forces incorporate various components, for example, the van
der Waals forces, angular forces, bonding forces, and torsional forces. On the other
hand, long-range forces are usually influenced by electrostatic interactions, which are
ubiquitous for any system of polar or charged molecules, for instance, biomolecules
(nucleic acids, proteins, sugars, lipid bilayers) in their aqueous environment [5, 31], see
Figure 2.1.

Due to their slow polynomial decay over distance (i.e., in the form of 1/‖x̄‖), elec-
trostatic interactions are in principle, long-ranged and, therefore, they can neither be
disregarded nor truncated in biomolecular modeling because they contribute remark-
ably to molecular interactions at all length scales [5, 37, 38, 70, 106, 120, 135]. Analysis
of molecular solvation and electrostatics is vital to research in chemistry, biophysics and
medicine, and can be categorized into quantitative analysis for thermodynamic or ki-
netic observables and qualitative analysis for general characteristics of biomolecular
solvation[31, 50]. A significant challenge in biomolecular simulation has been to model
these interactions accurately and efficiently. As such, methods that overcome this dif-
ficultly are of paramount importance and, therefore, desirous.

In a biomolecular simulation, the typical behaviour of electrostatic interactions is
mostly determined by the following factors: molecular charge distributions, atomic
radii of the solute (or biomolecule), mobile ion species, and the solvent [5]. There are
two main groups of computational approaches which are used to model electrostatic
interactions based on how the ionic solvent is treated during a simulation: explicit
and implicit methods. Explicit methods, as their name suggests, treat the solvent
and mobile ions as explicit particles around the biomolecule. Generally, they offer
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biomolecule

ionic solvent  

Figure 2.1.: Two-dimensional view of the three-dimensional Debye-Hückel model.

substantial detail and potential for accuracy in molecular simulation. However, the
explicit solvent and mobile ions often account for more than 90% of the total atoms in
a simulation, which can tremendously increase the computational costs for determining
the kinetic and thermodynamic properties [5]. Therefore, these approaches are highly
encouraged to be used by researchers in circumstances where the detailed interactions
between the solvent and the solute are significant, for instance, in the saturation of
solvent polarization near membranes [5].

On the other hand, implicit methods sacrifice the molecular details of the solvent
by considering the ionic solvent particles as a continuum. This, in return, leads to the
sampling of fewer degrees of freedom in the simulation, which results in a substantial
decrease in the computational costs [5, 48, 143]. Therefore, implicit solvent methods
enhance much better sampling of larger biomolecular systems than the explicit solvent
techniques because of their reduced computational requirements. However, they have
a lower accuracy level due to the simplistic treatment of water and ions that may
underperform in some circumstances, for example, in high local ion densities and high
ion valencies [5, 31].

2.2.1. Implicit solvent methods

As aforementioned, implicit solvent techniques are approximations aimed at reducing
the degrees of freedom in a simulation by simplifying the description of the aqueous
environment around and in the vicinity of the biomolecule. In this section, we briefly
review a few descriptions of polar interactions in an implicit solvent setting. We refer
interested readers to [5] for the case of nonpolar interactions.

The first example of implicit solvent models is the Debye-Hückel law [21], which
provides the basic description of the electrostatic potential φ(x) due to a point charge
of magnitude q located at position x0 in a homogeneous polarizable medium of dielectric
(permittivity) constant ε, i.e.,

φ(x) =
qe−κ‖x−x0‖

ε‖x− x0‖
. (2.1)
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2. The Poisson-Boltzmann theory

The ionic strength I of the solution, a function of the concentration of mobile ion
species, is represented by the screening parameter

κ2 =
8πI

1000εRT
, (2.2)

where R is the gas constant and T is the absolute temperature (in Kelvin).

At zero ionic strength, that is, as κ̄ → 0, the Debye-Hückel law reduces to the
Coulomb’s law, which provides a description of charges at infinite dilution in a polariz-
able continuum. A significant observation for the Debye-Hückel law and the Coulomb’s
law is that they both obey the superposition property, which states that the potential
determined by a sum of charges is equivalent to the sum of the potentials of the isolated
charges [5].

However, most biological systems of interest cannot be represented as a homogeneous
dielectric medium. This is because the interiors of biomolecules often have substantially
lower polarizabilities than their aqueous neighbourhoods. Therefore, Debye-Hückel or
Coulomb equations cannot be used to model typical biomolecular electrostatics [5].

The second example is the generalized Born (GB) model [40, 117], which is based on
the Born ion, a canonical electrostatic model that describes the electrostatic potential
and solvation energy of a spherical ion. In this model, an analytical expression based
on the Born ion model is used to approximate the electrostatic potential and solvation
energy of small molecules. In this model, the electrostatic contribution to the free
energy of solvation is

∆Gpol = −1

2

(
1− 1

εw

)∑
i,j

qiqj
fGB

, (2.3)

where εs is the solvent dielectric constant, qi and qj are partial charges, and fGB is
a function which interpolates between an effective Born radius, in cases where the
distance rij between atoms is short, and rij itself at large distances [40].

It is a computationally fast method for calculating approximate forces and energies
for solvated molecules, hence very popular in high-throughput applications such as the
molecular dynamics simulations. However, it fails to capture all the details of the
molecular structure and ion distributions thereby rendering it heuristic [5, 31].

The final and the most significant of the implicit solvent models, which is also an
extension of the Debye-Hückel model, is the Poisson-Boltzmann equation (PBE). It is
also the main model under study in this thesis. The PBE offers a compromise between
faster, but more approximative models, for instance, the GB, and more comprehensive
explicit solvent and integral equation approaches [5]. We derive the PBE model in
Section 2.2.2.

In a nutshell, continuum approaches which are motivated by the Debye-Hückel theory,
that is, treatment of electrostatic effects of solvated biomolecules, may be specially
suited for Brownian dynamics simulations (BD) or molecular dynamics (MD), in case
the electrostatic force is predominant in determining the behaviour of the system [67].
We briefly describe the notions of MD and BD.

10



2.2. Electrostatic interactions in biomolecular systems

Definition 2.1 (Molecular dynamics [67]):

It is well known that the motions of macrobiomolecules, for example, proteins, are a
particular instance of the N -body problem, which obey the laws of classical mechan-
ics. The dynamics of such a biomolecule can be described by the Newton’s second
law, i.e.,

f = Ma,

where M is an N ×N diagonal matrix containing the masses mi arranged along the
diagonal. Note that the vector f describing the electrostatic forces or chemical bonds
can be represented by the potential function φ(r) as

f = −∇φ(r).

The potential function φ is considered to be the sum of various distinct potential
functions, i.e.,

φ =
k∑
i=1

φi, (2.4)

where, for instance, the rapidly decaying near field potential φ1 may include the
Lennard-Jones 6-12 potential of noble gases

φ(r) =
N∑
i=1

4ε

[(
σi(r)

|r− ri|

)12

−
(

σi(r)

|r− ri|

)6
]
, (2.5)

which decays as |r|−6, or the van der Waals potential of chemical physics.
The external field φ2 might include, for instance, externally magnetic fields while

the far field φ3 might include the electrostatic potential of a charged particle system
or the gravitational potential. The far field is characterized by slow polynomial decay
in |r|−1, for example, the electrostatic potential of a charged multiparticle system

φ(r) =
N∑
i=1

qi
ε|r− ri|

. (2.6)

Biomolecules mostly occur in ionic solutions, and as such, the equations of motion
must include large scale electrostatic effects of the solvent molecules for the accu-
rate approximation of the far field. This is computationally expensive and infeasible
for large biomolecules, hence a tractable alternative for the electrostatic force cal-
culations can only be offered by continuum representations of the solvent molecules
[67]. ♦
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2. The Poisson-Boltzmann theory

Definition 2.2 (Brownian dynamics simulations [67]):

It refers to the simulation of an interacting system of particles by combining both
the deterministic effects of the Newton’s second law of motion (i.e., dynamics) and
the stochastic effects (i.e., Brownian motion). This approach can be fundamental
in investigating the binding properties of antibody or proteins once the electrostatic
potential has been computed. ♦

2.2.2. The Poisson-Boltzmann equation

The PBE is one of the most popular implicit solvent models which describes the solvent
in a continuum model through the Boltzmann distribution. It describes the electrostatic
potential in the entire domain which comprises both the molecule and the solvent.
From this potential, further information can be obtained at various regions of interest
and for different applications. Firstly, the electrostatic potential at the biomolecular
surface, commonly known as electrostatic surface potential, can provide insights into
possible docking sites for other small or large molecules. Secondly, the potential outside
the biomolecule can provide information about the free energy of interaction of small
molecules at different positions in the vicinity of the biomolecule. Thirdly, free energy
of a biomolecule can be determined, which provides information about the molecule’s
stability. Finally, the electrostatic field can be estimated from which the mean atomic
forces can be derived. More information can be found in [47, 48, 68, 132].

There are numerous ways for and reviews on the derivation of the PBE. The simplest
stems from the Poisson equation [75, 112], which can be derived from the Gauss’ law
and the divergence theorem (or Gauss’ theorem) [36]. Invoking the integral form of the
Gauss’ law, which relates the electric displacement field over a closed Gaussian surface
to the enclosed charge, we obtain the following general conservation relation∫

∂Ω

ε(s)E(s) · ds =

∫
Ω

ρ(x̄)

ε0
dx̄, (2.7)

where ε(s)E(s) is the electric displacement field, E is the electric field, ε(s) is the
permittivity of the enclosed surface, ε0 is the electric constant (or vacuum permittivity),
and ρ is the total electric charge density.

The divergence theorem, also in integral form, relates the electric field flux across
the boundary of a closed surface with the enclosed divergence, i.e.,∫

∂Ω

v(s) · ds =

∫
Ω

∇ · v(x̄)dx̄, (2.8)

is applied to the left-hand side of (2.7) to obtain∫
∂Ω

ε(s)E(s) · ds =

∫
Ω

∇ · ε(x̄)E(x̄)dx̄. (2.9)

Substituting the results of (2.9) into (2.7), that is, the divergence of the electric
displacement field equals the charge density, we obtain, in differential form, the Poisson
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2.2. Electrostatic interactions in biomolecular systems

equation for electrostatics (in SI units)

−∇ · (ε(x̄)∇u(x̄)) = ρ(x̄), in Ω ∈ R3, (2.10)

which describes the electrostatic potential u(x̄) at a point x̄ = (x, y, z) ∈ Ω. Note that
here, E(x̄) = −∇u(x̄).

The term ρ(x̄) is the charge distribution which generates the potential in a region
with a position-dependent and piecewise constant dielectric function ε(x̄). Equation
(2.10) is generally solved in a finite domain Ω subject to Dirichlet boundary conditions
u(x̄) = g(x̄) on ∂Ω. Usually, g(x̄) employs an analytic and asymptotically correct form
of the electrostatic potential and therefore, the domain must be sufficiently large to
ensure an accurate approximation of the boundary conditions [41].

To obtain the PBE from equation (2.10), we consider two contributions to the charge
distribution ρ(x̄): the “fixed” solute charges ρf (x̄) and the aqueous “mobile” ions in
the solvent ρm(x̄). The Nm partial atomic point charges (zi) of the biomolecule are
modeled as a sum of delta distributions at each atomic center x̄i, for i = 1, . . . , Nm,
that is,

ρf (x̄) =
4πe2

c

κBT

Nm∑
i=1

ziδ(x̄− x̄i). (2.11)

Here, ec/κBT (or reciprocal of the thermal voltage) is the scaling coefficient which en-
sures that the electrostatic potential is dimensionless, where ec is the electron charge
and κBT is the thermal energy of the system and is comprised of the Boltzmann con-
stant κB and the absolute temperature T . The total charge of each atom is eczi.

On the other hand, the solvent is modeled as a continuum through the Boltzmann
distribution which leads to the mobile ion charge distribution

ρm(x̄) =
4πe2

c

κBT

m∑
j=1

cjqje
−qju(x̄)−Vj(x̄), (2.12)

where we have m mobile ion species with charges qj and bulk concentrations cj. The
term Vj(x̄) is the steric potential which prevents an overlap between the biomolecule
and the counterions.

Substituting (2.11) and (2.12) for ρ in the Poisson equation (2.10) we obtain the
following classical nonlinear PBE (NPBE)

−∇ · (ε(x̄)∇u(x̄))− C
m∑
j=1

cjqje
−qju(x̄)−Vj(x̄) = C

Nm∑
i=1

ziδ(x̄− x̄i), in Ω ∈ R3, (2.13)

where C = 4πe2c
κBT

. This PBE model is best suited for polyvalent (or asymmetric) elec-
trolytes.

However, for monovalent (or symmetric) electrolytes, whose ions are in a 1 : 1 ratio,
for example, NaCl, we assume similar steric interactions for each species with the
solute. Moreover, m = 2, cj = c, qj = (−1)j and therefore, the two-term exponential
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2. The Poisson-Boltzmann theory

Table 2.1.: Parameters of the PBE (2.15) in centimeter-gram-second (CGS) units.

Parameter Value Unit (abbr.) Name

ec 4.8032424e-10 electrostatic units (esu) Fundamental charge

NA 6.0221367e+23 - Avogadro’s number

T 298.15 Kelvin (K) Absolute temperature

κB 1.3806581e-16 energy/Kelvin (erg/K) Boltzmann’s constant

series function (2.12) simplifies as follows:

ρm(x̄) =
4πe2

c

κBT

2∑
j=1

cjqje
−qju(x̄)−Vj(x̄),

=
4πe2

c

κBT

[
cqe−qu(x̄)−V (x̄) − cqequ(x̄)−V (x̄)

]
,

=
4πe2

c

κBT
cqe−V (x̄)

[
e−qu(x̄) − equ(x̄)

]
,

= −8πe2
c

κBT
cqe−V (x̄) sinh(qu(x̄)),

= −κ̄2(x̄) sinh(u(x̄)),



(2.14)

where κ̄2 = 8πNAe
2
cI/1000εκBT is a piecewise constant function as defined in (2.18),

which describes both the ion accessibility through e
−V (x̄)
c and the bulk ionic strength

(or concentration) I = 1/2
∑Nions

j=1 cjq
2
j [5].

We eventually obtain the PBE by combining the two expressions for the charge
distributions in (2.11) and (2.14) with the Poisson equation (2.10) for a monovalent
electrolyte,

−∇ · (ε(x̄)∇u(x̄)) + κ̄2(x̄) sinh(u(x̄)) =
Nm∑
i=1

qiδ(x̄− x̄i), (2.15)

subject to
u(x̄) = g(x̄) on ∂Ω, (2.16)

where
u(∞) = 0. (2.17)

In equation (2.15), qi = 4πe2c
κBT

zi, u(x̄) = ecψ(x̄)/κBT is the dimensionless potential
scaled by ec/κBT and ψ(x̄) is the original electrostatic potential in centimeter-gram-
second (cgs) units at x̄ ∈ R3. The terms ε(x̄) and κ̄2(x̄) are discontinuous functions at
the interface between the charged biomolecule and the solvent, and at an ion exclusion
region (Stern layer) surrounding the molecule, respectively, i.e.,

ε(x̄) =

{
εm = 1 if x̄ ∈ Ωm

εs = 78.54 if x̄ ∈ Ωs/Ωex

, κ̄(x̄) =

{
0 if x̄ ∈ Ωm/Ωex√
εsκ if x̄ ∈ Ωs

, (2.18)
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2.2. Electrostatic interactions in biomolecular systems

where Ωm is the region occupied by the protein molecule, Ωs is the region occupied by
the ionic solution and Ωex is the ion exclusion layer.

Remark 2.3:

Here and in the rest of the thesis, we shall denote by κ̄(x̄) the position-dependent
piecewise constant κ function in order to distinguish it from the scalar variable κ.
Note also that in the numerical tests, we consider the commonly used empirical value
of the solvent dielectric constant to be εm = 2. ♦

The function g(x̄) represents the Dirichlet boundary conditions which are discussed
in detail in Section 2.5.4 and are nonaffine in the parameter I. Some of the selected
parameters of the PBE are given in Table 2.1.

Details on mapping ε(x̄) and κ̄2(x̄) onto a computational grid can be found in [7].
The PBE (2.15) poses severe computational challenges in both analytical and numerical
approaches due to the infinite (unbounded) domain in (2.17), delta distributions, rapid
nonlinearity, and discontinuous coefficients [66, 67].

The PBE (2.15) can be linearized in the following two ways. One way is to consider
the solvent charge density ρm in (2.12) and assume that the steric interactions for each
species with solute are similar and that the local electrostatic energies are very small.
Then we apply the Taylor series expansion to the exponential function and assume
electroneutrality ∑

j

cjqj = 0

of the bulk solution to obtain the linear approximation of ρm as follows

ρm(x̄) =
4πe2

c

κBT

2∑
j=1

cjqje
−qju(x̄)−Vj(x̄),

≈ 4πe2
c

κBT
e−qu(x̄)

∑
j

cjqj [1− qju(x̄)] ,

= −
[

4πe2
c

κBT
e−qu(x̄)

∑
j

cjq
2
j

]
u(x̄),

= −κ̄2(x̄)u(x̄),


(2.19)

In the second method, we make the assumption that the electrostatic potential is
very small relative to the thermal energy κBT [48]. Therefore, the nonlinear function
sinh(u(x̄)) can be expanded into a Taylor series

sinh(u(x̄)) = u(x̄) +
u(x̄)3

3!
+
u(x̄)5

5!
+ . . . , (2.20)

and only the first term is retained. We obtain the linearized PBE (LPBE) given by

−∇ · (ε(x̄)∇u(x̄)) + κ̄2(x̄)u(x̄) = qiδ(x̄− x̄i). (2.21)
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Remark 2.4:

Both the LPBE and NPBE are referred to as interface problems, because of the
discontinuities in ε(x̄) and κ̄(x̄), which represent material interfaces in the physical
problem. ♦

Usually, proteins are not highly charged, and it suffices to consider the linearized
PBE (LPBE). One can still obtain accurate results because the higher order terms in
(2.20) do not provide a significant contribution. However, we must note that the LPBE
can give inaccurate results for highly charged biomolecules such as the DNA and RNA
(nucleic acids), phospholipid membranes, and polylysine [68]. More information about
the PBE, including its derivation from first principles, can be found in [67].

In this thesis, we consider a protein molecule immersed in ionic solution at physiologi-
cal concentration, and determine the electrostatic potential triggered by the interaction
between the two particles, see Figure 2.1. The electrolyte here is of monovalent type,
implying that the ionic strength is equivalent to the concentration of the ions. The ionic
strength is a physical parameter of the PBE, and we aim to accurately and efficiently
determine the electrostatic potential under variation of this parameter.

2.2.3. Analytical solutions of the PBE

Analytical solutions of the PBE are only possible under the assumption that the
biomolecules of interest have regular shapes, for example, spheres or cylinders, and
are only valid for the linearized PBE [66, 67]. And even if these solutions exist, they
are still quite complex. Here, we only discuss the analytical solution due to a spheri-
cal molecule with uniform charge immersed in ionic solvent as depicted in Figure 2.2.
Another model, which we shall not discuss here, is based on the complete solvent pen-
etration whereby rod-shaped molecules are considered [67]. The idea is to construct
the analytical solutions separately in the different model regions and then concatenate
them by invoking continuity conditions at the interfaces.

Let us consider Figure 2.2 in which the solvated spherical molecule has total surface
charge q. The coordinate system is defined to be centered at the molecule so that we
denote by R the radius of the molecule. Since the ions do not come into contact with
the molecule, they are barred by the stern (or ion-exclusion) layer, a − R. Therefore,
the ionic solvent covers the region outside of a. Further, we denote by εm and εs
the molecular and solvent dielectric constants, respectively. We obtain the following
expressions for the analytical solution in the three regions [67]:

u(r) =
q

εmR

(
1− Rκ̄

1 + κ̄a

)
r ≤ R,

u(r) =
q

εwr

(
1− rκ̄

1 + κ̄a

)
R ≤ r ≤ a,

u(r) =
qe−κ̄(r−a)

εw(1 + κ̄a)r
r ≥ R


(2.22)

16



2.2. Electrostatic interactions in biomolecular systems

Biomolecule

Solvent

+

+

++

+

−

−

−

−

−
−

+
−

+

+

Mobile ions

−

Stern layer

q

R a

Figure 2.2.: Two-dimensional view of a spherical molecule with spherically symmetric
charge.

However, these analytical models are not realistic because biomolecules have irregular
shapes or geometries and charge distributions [41, 67]. Therefore, numerical solutions
must be computed in order to obtain accurate and realistic solutions to the PBE models,
and we discuss these in Section 2.2.4.

2.2.4. Numerical solutions of the PBE

The shortcomings of the aforementioned analytical solutions makes it necessary to ap-
ply numerical techniques to the PBE and the first of such methods were introduced in
[145] where the electrostatic potential was determined at the active site of a protein
(or enzyme). The most popular numerical techniques in this regard are based on dis-
cretization of the domain of interest into small regions and employ the finite difference
methods (FDM) [7, 143], the finite element methods (FEM) [7, 66], the boundary ele-
ment methods (BEM) [22, 154], or the domain decomposition method [122]. Here, we
briefly discuss these numerical techniques and highlight their strengths and weaknesses
as far as the PBE discretization is concerned. A detailed review of these numerical
methods for solving the PBE can be found in [108].

2.2.4.1. Finite difference methods (FDM)

Finite difference methods (FDM) offer simpler implementation than the FEM or the
finite volume methods because the mesh generation and refinement is trivial [108],
see Figure 2.3. This advantage makes the FDM techniques the most popular numerical
methods for solving the PBE in biomolecular simulations. In principle, the FDM solves
the PBE on a uniform Cartesian mesh, where a Taylor series expansion is employed to
transform the differential operator in the PBE, i.e., −∇ · (ε∇), into a sparse difference
matrix. A manifold of matrix algebra techniques are then used to solve the resulting
matrix equations [5].
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Ωm

Ωs

Figure 2.3.: Two-dimensional view of the finite difference Cartesian grids for the PBE.

However, the FDM techniques also experience some numerical drawbacks when ap-
plied to the PBE. First, in biomolecular electrostatic calculations, typical grid spacings
(∆h) range between 0.2Å to 1Å. Therefore, for large biomolecular systems of hun-
dreds of angstroms in size, the number of degrees of freedom N = n3 in the resultant
discretized system easily approaches O(106) − O(109), which can be an onerous task
for the current computing resources. Secondly, despite their simple problem setup, the
FD grids provide minimal control over the placement of the unknowns in the solution
domain. Thirdly, in general, linear system solvers are of low efficiency thereby leading
to increased computational runtimes for the PBE [5, 108].

2.2.4.2. Boundary element methods (BEM)

In principle, the Boundary element methods (BEM) techniques recast the linear Poisson-
Boltzmann PDEs as certain boundary integral equation in the solution u by invoking
Green’s theorem [108]. This is realized by triangular simplicial discretization of the
molecular surface, and the solution represented for an induced surface charge. The
solution is then convolved with the Green’s function (or Coulomb potential) to give
the desired solution. The BEM provides a highly efficient computational tool for the
LPBE due to the calculation of a detailed description of the macromolecular geometry
with a low number of degrees of freedom [5].

However, the BEM have the following severe drawbacks: (1) they are only applicable
to the LPBE because of inexistence of Green’s functions for the nonlinear PBE, thereby
limiting their general use in biomolecular electrostatics and (2) their accuracy and or
stability is affected by singular boundary integrals [5, 108].

2.2.4.3. Finite element methods (FEM)

Finite element methods (FEM), like the BEM, employ simplicial discretization for the
mesh generation and construct the electrostatic potential from piecewise polynomial
basis functions which are associated with mesh vertices [5]. FEM in general, provides
more flexibility for local mesh refinement and handling of nonlinear equations, more
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rigorous convergence analysis and more selections of efficient iterative system solvers
than the FDM and the BEM [108]. However, when applied to the PBE with strong
singularities, it was not until in [103] that its rigorous solution and approximation
theory were established.

All of the aforementioned numerical methods have one major advantage in common.
It is possible to employ “electrostatic focussing”, which enables users to apply relatively
coarse grids for the entire calculations and very fine grids in regions of great interest
such as the binding or active sites of macrobiomolecules. This adaptivity provides
highly accurate local solutions to the PBE at reduced computational costs [5].

2.2.4.4. Multilevel solvers

Efficient solution of the algebraic system of equations derived from the discretization of
the PBE with either the FDM or the FEM can be obtained by multilevel solvers [26].
Matrix equations are often solved by iterative approaches, in which an initial guess
u0 is provided as the starting point, then a set of operations are repeatedly applied to
improve this initial guess until desired convergence is reached. However, the inability to
rapidly reduce long-range error in the solution limits the speed of conventional iterative
methods. This problem can be circumvented by the projection of the discretized system
onto grids or meshes at multiple resolutions. The error in the gradually converging low-
frequency solution components is rapidly reduced by the projection onto the finest mesh
through the solutions on the coarser levels of the system [5].

A “multilevel” solver algorithm is derived from the coupling of scales, in which the
system of algebraic equations is directly solved on the coarsest level, and the results
used to accelerate solutions on finer mesh levels [5]. The multilevel hierarchy is as-
sembled depending on the underlying discretization method. For example, for FDM
techniques, the so-called “multigrid” methods are used with minimal additional work
required to assemble the hierarchy. On the other hand, the “algebraic multigrid” meth-
ods are employed for the adaptive finite element discretizations [5]. Multigrid or mul-
tilevel techniques for both the FDM and FEM discretizations of the PBE have been
implemented, for example, in the APBS software package [78].

2.2.4.5. Parallel methods

Some PBE systems can be extremely large to be solved sequentially, i.e., on one pro-
cessor, regardless of the scalability of the numerical algorithm [5]. For instance, studies
on macromolecular assemblages or complexes may include between O(10)--O(105) of
residues such as ribosomes, microtubules, among others, which may be prohibitively ex-
pensive on most sequential platforms. Therefore, multiprocessor computing platforms
are necessary in such cases in order to solve the PBE in a parallel manner [5]. Parallel
methods together with the multigrid approaches have also been implemented in the
APBS software package, for example, the finite difference parallel multigrid (PMG)
solver [78].

Numerous software packages have been developed to solve the PBE and some of
the major ones include the adaptive Poisson-Boltzmann solver (APBS) [7] and Delphi
[127]. There are also recent developments regarding the PBE theory which include, the
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treatment of the biomolecular system as an interface problem, the extensive studies on
the nonlinear PBE, among others, see Section 2.6 for more details.

Due to the limited computational memory and speed, solving the PBE efficiently is
still computationally challenging and affecting the accuracy of the numerical solutions.
This is due to the following reasons. Firstly, electrostatic interactions are long-ranged
and therefore, the electrostatic potential decays exponentially over large distances,
see equation (2.17). This requires an infinite domain which is infeasible in practice.
Secondly, biomolecules of interest comprise thousands to millions of atoms which require
a large domain to accommodate both the biomolecule and the solvent.

To circumvent these challenges, it is customary to choose a truncated domain of at
least three times the size of the biomolecule so as to accurately approximate boundary
conditions [67]. Nonetheless, this still leads to a very large algebraic system consisting
of several hundreds of thousands to millions of degrees of freedom. It becomes even
more difficult if the PBE is incorporated in a typical dynamics simulation which involves
millions of time steps or in a multi-query task where the solution is solved many times
for varying parameter values such as the ionic strength [143].

Remark 2.5:

The computational complexity arising from the resultant high-dimensional system
can be greatly reduced by applying model order reduction (MOR) techniques. The
main goal of MOR is to construct a reduced-order model (ROM) of typically low
dimension, whose solution retains all the important information of the high-fidelity
system at a greatly reduced computational effort. Because the PBE is a parametrized
PDE (PPDE), we apply the reduced basis method (RBM) in Chapter 5, which falls
into the class of parametrized MOR (PMOR) techniques [14]. However, it is im-
portant to note that the RBM is not an independent numerical technique; hence its
accuracy depends on that of the underlying technique which is used to discretize the
PBE [14, 42]. ♦

2.3. Theory for the PBE solution

In this section, we provide the results for the existence and uniqueness of solutions
to both the linearized and the nonlinear PBE (NPBE) models, independently. For
the linearized PBE case, we show that a unique weak solution exists in either H1(Ω)
or L2(Ω), depending on whether or not the source terms are approximated by L2(Ω)
functions, respectively [67]. On the other hand, for the NPBE, we prove that the unique
solution to the boundary value problem of the NPBE extremizes the energy [30, 67, 105].
Note that some standard definitions and theorems from functional analysis, which are
significant in the proofs of the results in Section 2.3.1 and Section 2.3.2 are available
in Appendix A.
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2.3.1. Existence and uniqueness theorems for the LPBE

Let us first consider the strong, divergence form of the general second order linear
elliptic equations, in which the LPBE is a member [67]:

∇ · (a∇u) + bu = f in Ω ⊂ Rd,

u = gD on ΓD,

(a∇u) · n+ cu = gN on ΓN , Γ = ΓD ∪ ΓN and ΓD ∪ ΓN = ∅,

 (2.23)

where the functions b(x̄), f(x̄), u(x̄) : Ω 7→ R, gD(x̄) : ΓD 7→ R, gN(x̄) : ΓN 7→ R, and
the matrix function a(x̄) : Ω 7→ L(Rd,Rd). Equation (2.23) is often written in the
abstract form as

Lu = f.

The equation is elliptic if the matrix a(x̄) = [aij(x̄)] is positive definite for all x̄ ∈ Ω
and strongly elliptic if the following condition holds:

∃ λ > 0 such that
∑
ij

aijηiηj ≥ λ|η|2, ∀x̄ ∈ Ω, η ∈ Rd. (2.24)

Consequently, (2.23) has the following weak form. Find u ∈ H1
0 (Ω) such that

A(u, υ) = F (υ) ∀υ ∈ H1
0 (Ω), (2.25)

where

A(u, υ) =

∫
Ω

(a∇u · ∇υ + buυ)dx̄, F (υ) =

∫
Ω

fυ dx̄, Ω ⊂ Rd, (2.26)

with g = tr w and Ω ∈ C0,1 (i.e., bounded domains with locally Lipschitz boundary).
Consequently, the problem coefficients satisfy [67]:

(a) 0 < aij(x̄) ≤ c1 <∞, ∀x̄ ∈ Ω, i, j = 1, . . . , d.

(b) 0 ≤ b(x̄) ≤ c2 <∞, ∀x̄ ∈ Ω.

(c) f(x̄) ∈ L2(Ω).

(d) w(x̄) ∈ H1(Ω), g(x̄) ∈ H1/2(Γ), g = tr w.

(e) The differential operator is strongly elliptic, i.e., (2.24).

The following preliminary result can be proven given the very weak assumptions
on the coefficients in the problem (2.25)-(2.26). We shall use this result to prove the
existence of a unique solution to the LPBE. See [67] for more details.

Lemma 2.6 (Elliptic LPDE: Existence and uniqueness, see Lemma 2.10 in [67]):

There exists a unique weak solution u ∈ H1
0 (Ω) to the elliptic linear PDE (LPDE)

problem (2.25)-(2.26). ♦
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Proof. A detailed proof can be found in [67], where it is shown that the existence and
uniqueness of a weak solution u ∈ H1

0 (Ω) to (2.25)-(2.26) follows from the application
of the Lax-Milgram Theorem, whose conditions are met by the assumptions on the
problem coefficients. The main idea is to show that A(·, ·) is bounded and coercive,
and F (·) is bounded.

With this background on elliptic PDEs, we are in a good position to tackle the
solution theory for the LPBE. Consider the LPBE (2.21), where very broad ranges of
temperatures and ionic strengths are allowed, that is,

T ∈ [200K, 400K], Is ∈ [0, 10].

Consequently, we assume that the set of discrete charges {z1, . . . , zNm} which represent
the biomolecule lies well within the domain Ω, and therefore, far from the boundary Γ
of Ω. It is easy to show that the LPBE (2.21) has the form of (2.23), with the equivalent
weak formulation (2.25)-(2.26). It is shown in [67] that for the given temperature and
ionic strength ranges, the problem coefficients satisfy the following bounds:

(a) a : Ω 7→ L(R3,R3), aij(x̄) = δijε(x̄), 2 ≤ ε(x̄) ≤ 80, ∀x̄ ∈ Ω.

(b) b : Ω 7→ R, b(x̄) = κ̄2(x̄), 0 ≤ κ̄2(x̄) ≤ 127, ∀x̄ ∈ Ω.

(c) f : Ω 7→ R, f(x̄) = C ·∑Nm
i=1 ziδ(x̄− x̄i), 5249 ≤ C ≤ 10500,

−1 ≤ zi ≤ 1, ∀x̄ ∈ Ω.

(d) g : Γ 7→ R, g(x̄) = C
4πεs
·∑Nm

i=1
zie
−κ̄(x̄)|x̄−x̄i|/

√
εs

|x̄−x̄i| , εs = 80, ∀x̄ ∈ Γ.


(2.27)

Remark 2.7:

From the aforementioned assumption that the charges zi do not lie in the vicinity of
Γ, which will always hold when we choose our domain and the boundary, it is evident
that the boundary function g(x̄) is a well-behaved continuously differentiable function
of x̄, i.e., g ∈ C1(Γ). ♦

Remark 2.8:

It is important to note that if a quantum mechanical description of the solute is
used, parts of the assumptions formulated in (2.27) are no longer true. For instance,
there is no quantum mechanical operator which corresponds to an atom, because
atoms are not well-defined in molecules. This renders the definition of atomic charge
ambiguous [34, 144]. ♦

Theorem 2.9 (LPBE: Existence and uniqueness, see Theorem 2.11 in [67]):

There exists a unique weak solution u ∈ H1(Ω) to the LPBE if the source terms are
approximated by L2(Ω) functions. ♦
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2.3. Theory for the PBE solution

Proof. The proof is straightforward as outlined in [67]. To apply Lemma 2.6, we
have to verify the assumptions on the problem coefficients. To begin with, the
assumptions on a(x̄) and b(x̄) are clearly satisfied, see (2.27). Consequently, since
the source functions δ(x̄ − x̄i) are approximated with functions fi(x̄ − x̄i) ∈ L2(Ω),
via, for example, the cubic spline interpolation, then the composite function f(x) is
also clearly in L2(Ω). From Remark 2.7, we have that g ∈ C1(Γ) ⊂ H1(Ω) and it
is well known that ∃w ∈ H1(Ω) such that g = tr w. Finally, from the lower bound
on aij(x̄), the strong ellipticity assumption is satisfied. Therefore, the theorem now
follows from Lemma 2.6.

Remark 2.10:

The Lax-Milgram Theorem cannot be used to show the existence and uniqueness
of solutions to the LPBE if the function f consists of Dirac delta distributions rep-
resenting point charges, therefore, f /∈ L2(Ω). This is because the resulting linear
functional F in (2.26) is no longer bounded [67]. ♦

2.3.2. Existence and uniqueness theorems for the NPBE

Let us first consider the strong, divergence form of the general second order semi-linear
elliptic equations, in which the NPBE is a member [67]:

∇ · (a∇u) + b(x̄, u) = f in Ω ⊂ Rd,

u = gD on ΓD,

(a∇u) · n+ cu = gN on ΓN , Γ = ΓD ∪ ΓN and ΓD ∪ ΓN = ∅,

 (2.28)

where now the function b(x̄, u) : R 7→ R. We shall here denote the equation (2.28) in
the abstract form as

N(u) = f.

Furthermore, ellipticity is defined as in the linear case.
Consider the following boundary value problem of the NPBE (2.13) [105]:

NPBE : ∇ · ε∇u−N(u) = −ρf , in Ω,

BC : u = g, on ∂Ω

N(u) = C
m∑
j=1

cjqje
−qju(x̄).

 (2.29)

The electrostatic free energy is defined by

E[φ] =

∫
Ω

[ ε
2
|∇φ|2 − ρfφ+N∗(φ)

]
dV, N∗(φ) = C

m∑
j=1

cj
(
e−qjφ − 1

)
(2.30)

on
H1
g (Ω) = {φ ∈ H1(Ω) : φ = g on ∂Ω}. (2.31)
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Theorem 2.11 (NPBE: Existence and uniqueness, see Theorem 2.1 in [105]):

(a) The functional E(φ) : H1
g (Ω) 7→ R has a unique minimizer u ∈ H1

g (Ω).

(b) The minimizer is bounded in L∞(Ω) uniformly in ε ∈ [εmin, εmax].

(c) The minimizer is the unique solution to the BVP of the NPBE. ♦

Proof. (a). Existence and uniqueness of minimizer. By invoking the Poincaré in-
equality and the fact that N : R 7→ R is nonnegative, there exists constants
C1, C2 ≥ 0 such that

E[φ] ≥ C1‖φ‖2
H1(Ω) − C2 ∀ φ ∈ H1

g (Ω) and C1, C2 ≥ 0. (2.32)

Let α = infφ∈H1
g (Ω)E[φ]. Then α is finite. There exists uk ∈ H1

g (Ω), k = 1, 2, . . .,
such that

E[uk]→ α.

Then by the lower bound, we have that {uk} is bounded in H1(Ω) and hence it has
a subsequence (which is not relabeled) such that

uk → u

weakly in H1(Ω) and a.e. in Ω for some u ∈ H1
g (Ω). The weak convergence and

Fatou’s lemma imply that

α = lim
k→∞

E[uk] ≥ E[u] ≥ α.

Finally, the uniqueness of the minimizer u follows from the strict convexity of E[·]:

E[λυ + (1− λ)w] ≤ λE[υ] + (1− λ)E[w] (0 < λ < 1).

(b). The boundedness of the minimizer u. Let φg ∈ H1
g (Ω) be such that

∇ · ελφg = −ρf .

Then φg is bounded in L∞(Ω) uniformly in ε. Let u0 ∈ H1
g (Ω) be the unique

minimizer in H1
0 (Ω) of

H[φ] =

∫
Ω

[ ε
2
|∇φ|2 +N∗(φg + φ)

]
dV.

Then u = u0 + φg. Prove ‖u0‖L∞(Ω) ≤ C uniform in ε.
Since N(±∞) = ±∞, there exists λ > 0 with N(φ0 +λ) ≥ 1 and N(φ0−λ) ≥ −1

a.e. in Ω. Note λ is uniform in ε. Define uλ by

uλ(x̄) =


−λ if u0(x̄) < −λ,
u0(x̄) if |u0(x̄)| ≤ λ,

λ if u0(x̄) > λ.
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2.3. Theory for the PBE solution

Then uλ ∈ H1
g (Ω). Therefore, we have H[u0] ≤ H[uλ] and |∇uλ| ≤ |∇u0|. Hence∫

Ω

N∗(φg + u0)dV ≤
∫

Ω

N∗(φg + uλ)dV.

Consequently, we have by the convexity of N∗ : R→ R that

0 ≥
∫
{u0>λ}

[N∗(φg + u0)−N∗(φg + λ)] dV+

∫
{u0<−λ}

[N∗(φg + u0)−N∗(φg − λ)] dV

≥
∫
{u0>λ}

N(φg + λ)(u0 − λ)dV +

∫
{u0<−λ}

N(φg − λ)(u0 + λ)dV

≥
∫
{u0>λ}

(u0 − λ)dV −
∫
{u0<−λ}

(u0 + λ)dV

=

∫
{|u0|>λ}

(|u0| − λ)dV ≥ 0. (2.33)

Hence the Lebesgue measure of the set V ∈ Ω+ : {|u0(V )| > λ} = 0. Therefore,
|u0| ≤ λ a.e. Ω+.

(c). The minimizer is the unique solution to the BVP of the NPBE. By routine
calculations, we obtain

δE[u][η] :=
d

dt

∣∣∣∣
t=0

E[u+ tη] = 0 ∀η ∈ C1
c (Ω).

Since u ∈ L∞(Ω), we have∫
Ω

[ε∇u · ∇η − ρfη +N(u)η] dV = 0 ∀η ∈ H1
0 (Ω).

Hence u is a weak solution to the BVP of the NPBE. If φ0 ∈ H1
g (Ω) is another

solution to the BVP of the NPBE (2.29), then∫
Ω

{εΓ∇(u0 − φ0) · ∇η + [N(u0)−N(φ0)]η}dV = 0

for any η ∈ H1
0 (Ω). Choosing η = u0 − φ0 ∈ H1

0 (Ω) and invoking the convexity of
N∗ : R→ R, yields u0 = φ0, which proves the uniqueness.

Remark 2.12:

In [67], the existence and uniqueness of solutions to the NPBE was proved for the
monovalent NPBE variant in (2.15) wherein the idea of the proof was based on
the identification of a convex functional for which the weak form of the NPBE is
the corresponding gradient mapping. Then the Ekland-Temam theorem [44] was
invoked. ♦
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2. The Poisson-Boltzmann theory

Figure 2.4.: Electrostatic potential mapped onto protein surface of fasciculin 1 toxin
CPDB entry 1FAS.

2.4. Applications of the electrostatic potential

The resultant electrostatic potential for the entire system can be used to calculate elec-
trostatic free energies and electrostatic forces. The electrostatic free energy represents
the work needed to assemble the biomolecule and is obtained by integration of the
potential over a given domain of interest [41, 140]. For the LPBE, this energy is given
by

Gelec[u(x̄)] =
1

2

∫
Ω

ρfu(x̄)dx̄ =
1

2

Nm∑
i=1

ziu(x̄i), (2.34)

where u(x̄i) is the mean electrostatic potential acting on an atom i located at position
x̄i and carrying a charge zi. The integral in (2.34) can be seen as the integral of
polarization energy which is equivalent to the sum of interactions between charges and
their respective potentials. On the other hand, it is also possible to differentiate the
energy functional in (2.34) with respect to atomic positions to obtain the electrostatic
force on each atom [5, 41, 55].

The electrostatic potential can also be evaluated on the surface of the biomolecule
(electrostatic surface potential). It is used to provide information about the interaction
between the biomolecule and other biomolecules or ligands or ions in its vicinity. Figure
2.4 shows the electrostatic potential mapped onto the surface of the protein fasciculin
1 and was generated by the Visual Molecular Dynamics (VMD) software at different
orientations [69]. The electrostatic potential is computed by our FDM solver. The red
colour represents regions of negative potential, the blue colour represents regions of
positive potential, and the white colour represents neutral regions.

2.4.1. Similarity index (SI) analysis of proteins

Similarity indices (SIs) are quite significant for the following reasons. Firstly, they
are used in quantum mechanical calculations to compare the electron densities and
electrostatic potentials of small organic compounds. The comparison can be used to
derive quantitative structure-activity relationships (QSARs) [142]. Secondly, they are
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2.4. Applications of the electrostatic potential

used for comparison of molecular electrostatic potentials generated by the PBE. In
general, similarity analysis can be used to compare the interaction properties of related
proteins which provides information about binding to other particles [142].

If so many protein samples are considered, then it becomes a severe computational
issue. On the other hand, self-similarity indices can also be calculated by rotation of
individual proteins about an axis, tasks which can be handled more conveniently by
the RBM. In this case, the angle of rotation becomes the useful parameter. This is
our next research focus where we shall apply solution decomposition technique (the
range-separated canonical tensor format) [17] in order to modify the PBE in (2.15) so
as to improve on the accuracy and to reduce the computational costs.

2.4.2. Brownian dynamics simulation (BD) and ionic strength
dependence on reaction rates

Brownian dynamics simulation technique has a myriad of applications in biological sys-
tems. It may be used for example, to determine protein association rates, simulate
protein-protein encounter, among others [48, 51]. Protein association rates highly de-
pend on the ionic strength of the solution in which the interaction takes place. For
instance, high ionic strengths dampen or attenuate the effect of electrostatic forces and
energies of proteins, hence reducing the rates of association and vice versa. The depen-
dence on ionic strength of the solution is an indicator of the significance of long-range
electrostatic forces and hence diffusion control [51].

Works of several researchers corroborate this dependence of protein association rates
on ionic strength and we here mention a few of these findings. In their research about
ionic strength dependence of protein-polyelectrolyte interactions, Seyrek et al [131]
investigated the effect of univalent electrolyte concentration on protein-polyelectrolyte
complex formation. They observed that the addition of salt screened repulsions, as well
as attractions, thus reduced the binding of the complex.

Pasche et al [118] examined the effect of ionic strength and surface charge on pro-
tein adsorption at PEGylated surfaces. They observed that at high grafting density
and high ionic strength, the net interfacial force was determined by the steric barrier
properties of PEG (polyethylene glycol). On the other hand, at low ionic strength, the
electrical double layer thickness exceeded that of the PEG layer, therefore, the protein
interactions with PLL-g-PEG coated surfaces were influenced by the surface charges
shining through the PEG double layer.

In [125], the electrostatic influence on the kinetics of ligand binding to acetylcholinesterase
(AChE) was investigated and distinctions between active center ligands and fasciculin
were made. It was observed that reaction rates for the cationic ligands showed a strong
dependence on ionic strength. Furthermore, fasciculin 2 (FAS2) showed greater ionic
strength dependence than TFK+ (m-trimethylammoniotrifluoroacetophenone) which is
consistent with its multiple net positive charges.

The reduced basis method (RBM), which is discussed in Chapter 5, can be quite
useful for such multi-parametric systems, whereby a reduced order model (ROM) can be
obtained for varying ionic strengths and positions of the molecule under investigation.
This ROM can make the BD computations much cheaper than using the full order
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model (FOM).

2.5. Discretization of the classical LPBE

2.5.1. Finite difference discretization

The LPBE in (2.21) is discretized with a centered finite differences scheme to obtain
the algebraic linear system as below,

− H

dx2
εx
i+ 1

2
,j,k

(ui+1,j,k−ui,j,k)+
H

dx2
εx
i− 1

2
,j,k

(ui,j,k−ui−1,j,k)−
H

dy2
εy
i,j+ 1

2
,k

(ui,j+1,k−ui,j,k)

+
H

dy2
εy
i,j− 1

2
,k

(ui,j,k − ui,j−1,k)−
H

dz2
εz
i,j,k+ 1

2
(ui,j,k+1 − ui,j,k) +

H

dz2
εz
i,j,k− 1

2
(ui,j,k − ui,j,k−1)

+Hκ̄2
i,j,kui,j,k = HCqi,j,k, (2.35)

where H = dx × dy × dz is a scaling factor, qi,j,k is the discretized molecular charge
density and C = 4πe2

c/κBT .

It is important to choose efficient algorithms and parameters to be used in the dis-
cretization of the charge density distribution, the kappa, and the dielectric functions
that appear in the LPBE for the accuracy of the mean electrostatic potential solution.
An efficient method is usually chosen to partition the domain into regions of solute (or
biomolecule) and the solvent dielectric. Some of the key methods employed in APBS
are the molecular surface and cubic-spline surface methods [140]. In the following
subsections, we provide some insights into these discretizations.

2.5.2. Calculation of dielectric constant distribution and kappa
function

We notice that the dielectric constant ε in equation (2.35), is discretized at half grid,
and therefore, we use a staggered mesh which results in three arrays (in x, y, and z
directions) representing the shifted dielectric values on different grids. The dielectric
coefficients and kappa functions which are piecewise constant, are mapped according
to (2.18).

Techniques used to map the dielectric and kappa functions onto the grid include,
among others, the molecular surface, and the smoothed molecular surface, which are
calculated using the Connolly approach [35] and the cubic-spline surface. For more
information see [140]. The cubic-spline surface method, which is our method of choice,
is more suitable than the other two because it is possible to evaluate the gradient
of the mean electrostatic potential such as in the determination of the solvated or
polar forces. This method introduces an intermediate dielectric region at the interface
between the solute and the solvent because the kappa and dielectric maps are built
on a cubic-spline surface. This smoothes the transition of the functions to circumvent
discontinuities inherent in them [7, 140].
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2.5.3. Calculation of charge densities

The molecular charge density (right-hand side of the LPBE (2.21)) can be obtained from
any file with atomic coordinates, charges, and radii. However, these atomic coordinates
may not coincide with any of our grid points. Therefore, it is necessary to find an
efficient method of spreading the point charges (summation term in LPBE) to the grid
points.

Several methods are available to map or spread the charges onto the grid points,
e.g. in the APBS software package. Trilinear interpolation (or linear spline) in which
charges are mapped onto nearest-neighbour grids, results in potentials which are very
sensitive to the grid resolution. Cubic B-spline interpolation where charges are mapped
to two layers of grid points, has an average sensitivity to the grid setup, and quintic
B-spline interpolation has the lowest sensitivity to grid spacing because charges are
spread out to three layers of the grid points [7].

In this study, we use the cubic B-spline interpolation (basis spline) method which
maps the charges to the nearest and next-nearest grid points. Although computation-
ally expensive, this method provides softer or smoother distributions of charges which
subsequently reduces the sensitivity of the mean electrostatic potential solutions to the
grid spacing [140].

2.5.4. Dirichlet boundary conditions

Analytical solutions to the LPBE can only be obtained for systems with simple ge-
ometries, for example, spherical and cylindrical systems. Equation (2.36) shows an
analytical solution for a spherical molecule with uniform charge (Born ion) [67]. From
this equation, we can obtain two different kinds of Dirichlet boundary conditions, the
single Debye-Hückel (SDH) and multiple Debye-Hückel (MDH). For the former, we as-
sume that all the atomic charges are collected into a single charge at the center of the
solute approximated by a sphere. This kind of boundary condition is suitable when
the boundary is sufficiently far from the biomolecule. On the other hand, the latter
assumes the superposition of the contribution of each atomic charge (i.e. multiple, non-
interacting spheres with point charges) with respective radius. This kind of boundary
condition is more accurate than SDH for closer boundaries but can be computationally
expensive for large biomolecules.

In this study, we employ the MDH type [7, 126],

u(x) = (
e2
c

κBT
)
Nm∑
i=1

zie
−κ(di−ai)

εw(1 + kai)di
on ∂Ω, di = |x− xi|. (2.36)

Here, zi are the point partial charges of the protein, εw is the solvent dielectric, κ =
κ̄/
√
εw is a function of the ionic strength of the solution, ai are the atomic radii, and

Nm is the total number of point partial charges in the protein.
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Remark 2.13:

The presence of a highly singular right-hand side of (2.15) which is described by a
sum of Dirac delta distributions, introduces significant errors in the numerical solu-
tion of the PBE. For instance, for every singular charge zi in (2.15), the electrostatic
potential u(x̄) exhibits degenerate behaviour at each atomic position x̄i in the molec-
ular region Ωm. To overcome this problem, the PBE theory has recently received
a major boost by the introduction of solution decomposition techniques which have
been developed, for example, in [30, 32, 110, 151]. The idea behind these techniques
is the avoidance of building numerical approximations corresponding to the Dirac
delta distributions by treating the biomolecular system (see Figure 2.1) as an inter-
face problem. This is coupled with the advantage that analytical expansions in the
molecular sub-region are possible, by the Newton kernel. We discuss some of these
regularization techniques in detail in Section 2.6. ♦

2.6. Recent advances in the Poisson-Boltzmann theory

We here discuss and acknowledge the recent developments of the PBE theory. Firstly,
the biomolecular system has been considered as an interface problem which requires
solution decomposition techniques to get rid of the solution singularities caused by the
Dirac-delta distributions on the right hand side of (2.21) or (2.15). This has been
discussed, for example in [54, 103, 110, 149] where the PBE has been modified into an
interface problem.

Typical solution decomposition techniques for the PBE entail a coupling of two equa-
tions for the electrostatic potential in the molecular (Ωm) and solvent (Ωs) regions,
through the boundary interface [30, 32]. The equation inside Ωm is simply the Poisson
equation, due to the absence of ions, i.e.,

−∇ · (εm∇u) =
Nm∑
i=1

qiδ(x̄− x̄i) in Ωm, (2.37)

where qi = 4πe2c
κBT

zi. On the other hand, there is absence of atoms in Ωs. Therefore, the
density is purely given by the Boltzmann distribution

−∇ · (εs∇u) + κ̄2 sinh(u) = 0 in Ωs. (2.38)

The two equations (2.37) and (2.38) are coupled together through the interface bound-
ary conditions

[u]Γ = 0, and

[
ε
∂u

∂nΓ

]
Γ

= 0, (2.39)

where Γ := ∂Ωm = ∂Ωs∩Ωm and [f ]Γ = lim
t−→0

f(x̄+ tnΓ)−f(x̄− tnΓ) is the jump across

the boundary. Here, nΓ denotes the unit outward normal direction of the interface Γ.
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We now briefly describe some of the different solution decomposition techniques which
form the state of the art representation of the PBE. The first solution decomposition
by [151] is generally given by

−εm∆u(x̄) = C

Nm∑
i=1

ziδ(x̄− x̄i), x̄ ∈ Dm,

−εs∆u(x̄) + κ̄2 sinh(u(x̄)) = 0, x̄ ∈ Ds,

u(s+) = u(s−), εs
∂u(s+)

∂n(s)
= εm

∂u(s−)

∂n(s)
, s ∈ Γ,

u(s) = g(s), s ∈ ∂Ω,


(2.40)

where C = 4πe2
c/κBT , Dm the protein domain, Ds the solvent domain and Γ the

interface between the protein and the solvent. The solution u(x̄) is decomposed as
follows,

u(x̄) = G(x̄) + φ̃(x̄) + ũ(x̄). (2.41)

The corresponding components of u(x̄) include the analytical solution G(x̄) of the
Poisson equation in the molecular domain,

G(x̄) =
C

4πεm

Nm∑
i=1

zi
|x̄− x̄i|

, x̄ ∈ Dm, (2.42)

the solution of the linear interface boundary value problem

∆φ̃(x̄) = 0, x̄ ∈ Dm ∪Ds,

φ̃(s+) = φ̃(s−), εs
∂φ̃(s+)

∂n(s)
= εm

∂φ̃(s−)

∂n(s)
+ (εm − εs)

∂G(s)

∂n(s)
, s ∈ Γ,

u(s) = g(s)−G(s), s ∈ ∂Ω,

 (2.43)

and the solution of the nonlinear interface boundary value problem

∆ũ(x̄) = 0, x̄ ∈ Dm,

−εs∆ũ(x̄) + κ̄2 sinh(ũ(x̄) + φ̃(x̄) +G(x̄)) = 0, x̄ ∈ Ds,

ũ(s+) = ũ(s−), εs
∂ũ(s+)

∂n(s)
= εm

∂ũ(s−)

∂n(s)
, s ∈ Γ,

u(s) = 0, s ∈ ∂Ω.


(2.44)

Secondly, we have the solution decomposition by [110] which takes the form u(x̄) =
û(x̄) + ũ(x̄). The short-range part û(x̄) is given by

û(x̄) =

{
G(x̄) + u0(x̄) if x̄ ∈ Dm,

0 if x̄ ∈ Ds,
(2.45)

where u0(x̄) is a harmonic function which compensates for the discontinuity on the
interface and satisfies the following conditions

∆u0(x̄) = 0 if x̄ ∈ Dm,

u0(s) = −G(s), s ∈ Γ.

}
(2.46)
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The regular part ũ(x̄) is represented by

−∇ · (ε(x̄)∇ũ(x̄)) + κ̄2(x̄) sinh(ũ(x̄)) = 0,

[ũ(s)]Γ = 0, [ε∇ũ(s) · n]Γ = −εm∇(G(s) + u0(s)) · n|Γ .

}
(2.47)

Thirdly, the solution decomposition in [30] is as follows; u(x̄) = G(x̄) + ur(x̄), where
G(x̄) is as in (2.42) and the regular part is given by

−∇ · (ε∇ur) + κ̄2(x̄) sinh(ur +G) = ∇ · ((ε− εm)∇G) in Ω

ur = g −G on ∂Ω.

}
(2.48)

We can also further decompose (2.48) into the linear and nonlinear components as
follows ur(x̄) = ul(x̄) + un(x̄), i.e.,

−∇ · (ε∇ul) = ∇ · ((ε− εm)∇G) in Ω

ul = 0 on ∂Ω,

}
(2.49)

and
−∇ · (ε∇un) + κ̄2(x̄) sinh(un + ul +G) = 0 in Ω

un = g −G on ∂Ω.

}
(2.50)

Lastly, a two component matched interface and boundary (MIB) regularization ap-
proach for charge singularities in implicit solvation was considered in [54], whereby
local higher order interpolation together with the interface jump conditions are used to
capture the discontinuities of the solution and the coefficients (dielectric and kappa) of
the PBE.

Remark 2.14:

The solution decomposition techniques in (2.48) provides the motivation for the RS
tensor format for regularizing the PBE, which is discussed in Chapter 4. It is also
implemented as a solver option for the PBE solution in the well-known adaptive
Poisson-Boltzmann software (APBS) package using the FEM [8]. ♦

However, the following computational challenges are inherent in the aforementioned
techniques. First, all these techniques do not efficiently separate the long- and short-
range components in each of the atomic volumes of the biomolecule. Rather, they split
the Laplacian operator at the solute-solvent interface using the dielectric coefficient as
a cutoff function, thereby creating the need to incorporate the so-called interface (or
jump) conditions for the potential function at the interface in order to eliminate the
solution discontinuity (e.g., Cauchy data) at the interface of complicated sub-domain
shapes. Consequently, the long-range components of the free space potential are not
completely decoupled from the short-range parts at each atomic radius, in the “so-
called” singular function G(x̄), in the molecular domain Ωm.

Secondly, in the solution decomposition techniques, see, for instance, [151], multi-
ple algebraic systems for the linear and nonlinear boundary value problems have to
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be solved, thereby increasing the computational costs. Thirdly, the system matrix is
modified because of incorporating the interface conditions and also, for instance, the
smooth function (G), in the Boltzmann distribution term in (2.48).

In this thesis, we apply a new solution decomposition approach for the regularization
of the PBE by using the RS canonical tensor format which was developed in [17].
This technique relies on the independent grid-based low-rank tensor representation of
the long- and short-range components in the total sum of Newton kernels discretized
on a fine 3D n⊗3 Cartesian grid Ωn in the computational box Ω ⊂ R3 [17]. This
representation is based on the splitting of a single reference potential, defined by the
Newton kernel, p(‖x̄‖) = 1/‖x̄‖, into a sum of localized (in the respective atomic
volumes) and global low-rank canonical tensors both represented on the computational
grid Ωn.

The long-range part in the total potential of a multiparticle system is approximated
by a low-rank canonical/Tucker tensor whose rank only logarithmically depends on the
number of particles in the system [17]. The rank reduction algorithm is accomplished
by the canonical-to-Tucker (C2T) transform through the reduced higher order singular
value decomposition (RHOSVD) [82] with a subsequent Tucker-to-canonical (T2C)
decomposition, see Chapter 3 for a detailed discussion. On the other hand, the short-
range contributions to a multiparticle system are parametrized by a single low-rank
canonical reference tensor of local support, accomplished by a list of particle coordinates
and their respective charges [17].

In general, the splitting technique employed in this thesis is based on the RS tensor
decomposition of the discretized Dirac delta distribution [85], which allows avoiding
the nontrivial matrix reconstruction as in (2.48) and in [151]. The only requirement
in this approach is a simple modification of the singular charge density of the PBE
in the molecular region Ωm, which does not change the FEM/FDM system matrix.
The singular component in the total potential is recovered explicitly by the short-range
component in the RS tensor splitting of the Newton potential. The main computational
benefits of this approach are the localization of the modified singular charge density
within the molecular region and automatic maintaining of the continuity in the Cauchy
data on the interface. Furthermore, this computational scheme only includes solving a
single system of FEM/FDM equations for the regularized (or long-range) component
of the decomposed potential.

Remark 2.15:

The novelty of the new regularization approach for the PBE is the efficient tensor
splitting of the Newton potential in the respective atomic volumes of the biomolecule,
thereby eliminating the contribution of the singular electrostatic component to the
jump-condition at the solute-solvent interface. ♦
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2.7. Conclusions

In this chapter, we have discussed the PBE theory and its application to biomolecular
simulation. The PBE is hitherto the most efficient and popular implicit solvent method
whose analytical solutions for realistic biomolecules are inexistent. Therefore, only
numerical techniques can offer accurate solutions to the PBE. However, these numerical
techniques face severe computational challenges due to the following major reasons: (1)
the rapid or strong singularities caused by the singular sources and (2) the high number
of degrees of freedom resulting from the discretizations of large biomolecular systems.
We have highlighted the current state of the art remedies to fix the first problem from
the literature and provided their shortcomings. In Chapter 4, we develop an efficient
and novel technique to construct regularized PBE models based on the range-separated
tensor format. This is achieved by the efficient splitting of the Dirac delta distribution
in the molecular domain and the construction of a regularized source term which is
applied to the PBE in order to compute smooth long-range electrostatic potentials.
Next, we tackle the second problem by applying the reduced basis method in Chapter 5
to the PBE in order to construct highly accurate surrogate reduced order models of
low dimension in order to accelerate biomolecular simulations.
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INTRODUCTION TO TENSOR METHODS
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In this chapter, we first discuss the rank-structured tensor representations from
multilinear algebra in Section 3.1 and basic tools from tensor numerical methods in
Section 3.2, which form the prerequisites for understanding the range-separated (RS)
canonical/Tucker tensor format.

3.1. Multilinear algebra of tensors

In this section, we provide an elementary introduction to higher order tensors (i.e.,
tensors of order d ≥ 3). There exist a lot of ideas and algorithms for the low-rank
tensor representation of multi-dimensional data by utilizing the canonical (or canonical
decomposition/parallel factors (CP)) and the Tucker decompositions, which were orig-
inally established in the fields of chemometrics and psychometrics [28, 92]. Later on,
these developments were extended to signal processing and experimental data analysis
[89, 101]. The multilinear algebra of rank-structured tensors was gestated by the early
articles on polyadic (canonical) tensor decomposition [63] and the orthogonal Tucker
tensor decomposition [138].

Currently, in the computer science field, a considerable amount of research is per-
formed on tensor decomposition techniques for big data analysis, see for instance [3].
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We emphasize that in this field, the tensor decompositions have been employed mostly
for quantitative analysis of correlations in the multidimensional data arrays obtained,
for example, from experiments. Furthermore, usually, there are no special requirements
on the accuracy of the decompositions for these data.

In what follows, we introduce higher order tensors of mode d (d ≥ 3) and their related
properties. This allows us to examine the main rank-structured tensor formats which
are useful in the range-separated tensor format [17].

3.1.1. Full format mode d tensors

Definition 3.1 (Tensor):

A mode d tensor is a multidimensional array of data over a d-tuple index set (or
multi-indices) i = (i1, . . . , id), with i` ∈ I`, I` = {1, . . . , n`}, ` = 1, . . . , d. That is

A = [ai1,...,id ] ≡ [a(i1, . . . , id)] ∈ RI , (3.1)

where the Cartesian product of the index set is given by I = I1 × · · · × Id. A tensor
A is considered as an element of a linear vector space Vn = ⊗d`=1RI` of real-(or
complex-) valued dth-order tensors. It is equipped with the Euclidean scalar product
〈·, ·〉 : Vn × Vn → R defined as

〈A,B〉 :=
∑

(i1,...,id)∈I
ai1,...,idbi1,...,id for A, B ∈ Vn, (3.2)

and ‖A‖F :=
√
〈A,A〉 is the corresponding Frobenius norm. ♦

When all the dimensions have equal size, n` = n, the resultant tensor is referred to as
n⊗d tensor. Unless both d and n are small, n⊗d is quite large, and in some occasions
it may exceed the computer memory due to the exponential scaling in nd, commonly
known as “curse of dimensionality”. This exponential growth in the dimension can be
gotten rid of by applying the rank-structured tensor representations of multidimensional
tensors [17].

Definition 3.2 (Order):

The order (also known as modes or ways) of a tensor is the number of dimensions.
We therefore can define a scalar as a zeroth-order tensor, a vector as a mode (order)-1
tensor, a matrix as a mode-2 tensor and tensors of order three or higher are known
as higher-order tensors. ♦

36



3.1. Multilinear algebra of tensors

Figure 3.1.: Column, row, and tube fibers of a mode-3 tensor.

Figure 3.2.: Lateral, horizontal, and frontal slices of a mode-3 tensor.

Definition 3.3 (Fibers):

Fibers are higher-order analogues of matrix rows and columns whereby every index
but one is fixed. A matrix column is a mode-1 fiber and a matrix row is a fiber of
mode-2. For third-order tensors, we have column, row, and tube fibers which are
denoted by x:jk, xi:k, and xij:, respectively, see Figure 3.1. ♦

Definition 3.4 (Slices):

Slices are 2D sections of a tensor and are defined by fixing all except two indices. We
have the horizontal, lateral, and frontal slices in a mode-3 tensor denoted by Xi::,
X:j:, and X::k, respectively, see Figure 3.2. ♦

Definition 3.5 (Rank):

The tensor rank, R = rank(X) of a tensor X is defined as the minimum number
of rank-one tensors, which are needed to produce X as their sum. Therefore, we
can write a rank-R matrix as A =

∑R
r=1 σrar ⊗ br and a rank-R mode-3 tensor as

X =
∑R

r=1 σrar ⊗ br ⊗ cr. ♦
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3. Introduction to tensor methods

Definition 3.6 (Vectorization):

Vectorization is the reordering of a tensor X into a vector by vertically stacking
the columns of X into a tall vector. For simplicity, consider for example, a matrix
A ∈ RM×N . The resulting vectorized form is given by

vec(A) =


a:1

a:2

...

a:N

 . (3.3)

♦

Definition 3.7 (Matricization):

Matricization is the transformation of a tensor into a matrix. Also known as unfolding
or flattening, it involves reordering of the elements of an d-order tensor into a matrix
whose columns are the respective fibers along `-mode, ` = 1, . . . , d. For instance, a
3× 2× 5 tensor can be arranged as a 6× 5 matrix or 2× 15 matrix.

Note that the unfolding of a tensor into a matrix can reduce some multilinear
algebraic operations for tensors of order d (d ≥ 3) to the standard linear algebra.
Figure 3.3 shows the unfolding of a 3D tensor for mode ` = 1. Precisely, the unfolding
of a tensor A ∈ RI1×···Id along mode ` is a matrix of size n`× (n`+1 · · ·ndn1 · · ·n`−1),
which can be denoted by

A` = [aij] ∈ Rn`×(n`+1···ndn1···n`−1), (3.4)

whose columns are the respective fibers of A along the `th mode.
Consider x ∈ X to be an element of a tensor and m ∈M an element of the unfolded

tensor. Then the mode-n matricization can be defined through the following mapping

xi1,i2,··· ,iN 7→ min,j with j = 1 +
N∑
k=1
k 6=n

(ik − 1)
k−1∏
m=1
m6=n

Im

 . (3.5)

♦

We present a simple example from [124] to demonstrate the formula in (3.5) for the
matricization of a mode-3 tensor.

Example 3.1:

Let X be a tensor with the following frontal slices:

X1 =

1 4 7 10

2 5 8 11

3 6 9 12

 X2 =

13 16 19 22

14 17 20 23

15 18 21 23

 .
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I3

A(1)

I2

I1

A

I1

I3

I2

Figure 3.3.: Unfolding of the 3D tensor A to the (I1 × I2I3)-matrix A(1).

Then the three mode-n matricizations are given by:

X(1) =

1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 23

 X(2) =


1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24



X(3) =

[
1 2 3 4 · · · 9 10 11 12

13 14 15 16 · · · 21 22 23 24

]
. ♦

Definition 3.8 (Contracted product):

Contracted product of two tensors is another essential tensor operation which is
analogous to the matrix-matrix multiplication. The difference is that for matrices,
they are positioned accordingly to allow multiplication over the compatible sizes. On
the other hand, the contraction mode ` must be determined explicitly for tensors.
Therefore, given a tensor A ∈ RI1×···×Id and a matrix B ∈ RJ`×I` , the corresponding
mode-` tensor-matrix product is given by

C = A×` B ∈ RI1×···×I`−1×J`×I`+1×···×Id (3.6)

where the sign “×`” denotes the contraction over the mode number ` and

ci1...i`−1j`i`+1...id =

n∑̀
i`=1

ai1...i`−1i`i`+1...idbj`i` , j` ∈ J`.

The following sequence of operations can be used to perform a given contraction:

� matrix unfolding (or reshaping) of the tensor;

� matrix-matrix multiplication over the corresponding dimension;

� reshaping of the resultant matrix into a tensor. ♦
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Remark 3.9:

The contracted product between a tensor and a matrix can be applied successively
along several modes, and can be shown to be commutative, i.e.,

(A×` B)×m P = (A×m P )×` B = A×` B ×m P, ` 6= m. (3.7)

♦

Remark 3.10:

The unfolding operation in MATLAB is accomplished by the “reshape” command,
which is done w.r.t the first given variable. The unfolding w.r.t other variables, a
corresponding permutation is necessary by using the “permute” command. See [79,
102], for more details. We demonstrate the corresponding MATLAB implementation
of an 8× 10× 6 tensor unfolding in the following script. ♦

A = rand(nx,ny,nz) % generate a 3D tensor with random coefficients

% Unfolding along mode 1:
A1 = reshape(A,nx,ny*nz);

% Unfolding along mode 2:
B = permute(A,[2,1,3]);
A1 = reshape(B,ny,nz*nx);

% Unfolding along mode 3:
C = permute(A,[3,2,1]);
A1 = reshape(C,nz,nx*ny);

3.1.2. Rank-structured tensor formats

The ubiquitous notion of rank-structured tensor formats for the compressed approxi-
mation of multidimensional data is commonly understood for instance, in the context
of nonlinear parametrization by a small number of parameters which permit low storage
costs and efficient multilinear algebra through reduction to univariate operations [17].

Definition 3.11 (Rank-1 tensor):

The basic separable element is the rank-1 tensor given by

A = a(1) ⊗ · · · ⊗ a(d) ∈ Rn1×···×nd , (3.8)

where the entries ai1,...,id = a
(1)
i1
· · · a(d)

id
require only (n1 + . . . + nd) � nd bytes to

store it. If n` = n, then the storage cost is dn� nd. ♦
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Figure 3.4.: Canonical tensor decomposition of a 3rd order tensor.

3.1.2.1. R-term canonical tensor format

The R-term canonical tensor format, also known as CANDECOMP/PARAFAC (CP),
i.e., canonical decomposition and the parallel factors [87] is defined by a finite sum of
rank-1 tensors

A =
R∑
k=1

ξka
(1)
k ⊗ · · · ⊗ a

(d)
k , ξk ∈ R, (3.9)

where a
(`)
k ∈ Rn` are normalized vectors, and R ∈ R+, the canonical rank. The storage

cost is bounded by dRn. The entries of the 3D canonical tensor (3.9) are computed as
the sums of elementwise products,

ai1,i2,i3 =
R∑
k=1

ξka
(1)
i1,k
· a(2)

i2,k
· a(3)

i3,k
. (3.10)

The diagrammatic representation of a third-order canonical tensor format is shown
in Figure 3.4.

Remark 3.12:

The origins of the CP lie in psychometrics from 1970, but their application has
been extended to chemometrics, neuroscience, and in array processing [90]. However,
stable algorithms to compute the nearly optimal rank-R canonical representation of a
full size tensor are hitherto unavailable (it is an ill-posed problem). To circumvent this
drawback, in [17, 80, 82] the authors developed the multigrid accelerated canonical
to Tucker (C2T) transform which utilizes the reduced higher order singular value
decomposition (RHOSVD) in order to obtain efficiently the low rank approximation
to the original full size tensor. ♦

3.1.2.2. Rank-r orthogonal Tucker format

The Tucker decomposition was pioneered by Tucker in 1963 [139] and like the CP,
it goes by several names, for example, HOSVD, N -mode SVD, three-mode (principal
component analysis) PCA [90]. The rank-r orthogonal Tucker format for a tensor V is

V =
∑r1

ν1=1
· · ·
∑rd

νd=1
βν1,...,νdv

(1)
ν1
⊗ · · · ⊗ v(d)

νd
≡ β ×1 V

(1) ×2 V
(2) . . .×d V (d), (3.11)
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U
=

U
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Figure 3.5.: Tucker tensor decomposition of a 3rd order tensor.

where {v(`)
ν` }r`ν`=1 ∈ Rn` is the set of orthonormal vectors for ` = 1, . . . , d. Here,

×` denotes the contraction along the mode ` with the orthogonal matrices V (`) =
[v

(`)
1 , . . . ,v

(`)
r` ] ∈ Rn`×r` . β = βν1,...,νd ∈ Rr1×···rd is the Tucker core tensor. The canoni-

cal representation (3.9) can be written as the rank-(R, . . . , R) (nonorthogonal) Tucker
tensor

A = ξ ×1 A
(1) ×2 A

(2) . . .×d A(d), (3.12)

by introducing the side matrices A(d) = [a
(`)
1 , . . . , a

(`)
R ] ∈ Rn`×R which are obtained by

concatenating the canonical vectors a
(`)
k , k = 1, . . . , R.

3.2. Some basics of tensor numerical methods

Tensor-structured numerical methods are now becoming popular in scientific computing
due to their intrinsic property of reducing the grid-based solution of multidimensional
problems to essentially “one-dimensional” computations. These methods evolved from
bridging of the traditional rank-structured tensor formats of multilinear algebra [90,
134] with the nonlinear approximation theory based on a separable representation of
multidimensional functions and operators [53, 56, 83].

The breakthrough in the tensor numerical methods began when Khoromskij in 2006
proved that for some classes of function-related tensors, the approximation error of
Tucker decomposition decays exponentially with respect to the Tucker rank [83], i.e.,

‖A(r) −A0‖ ≤ Ce−αr, with r = min
`
r`, (3.13)

where A0 and A(r) are the initial tensor and its “Tucker-rank-r” approximation, re-
spectively, and r` is the minimal Tucker rank.

One of the ingredients in the development of tensor methods was the canonical-
to-Tucker (C2T) algorithm, see Algorithm 3.1 and the reduced higher order singular
value decomposition (RHOSVD). The HOSVD allows to find the mapping matrices
in (3.11) without constructing full-size tensors [82]. Originally, C2T was invented for
the reduction of the ranks of canonical tensors when calculating three-dimensional
convolution integrals in computational quantum chemistry [82], see also the monographs
[79, 86] and the references therein.
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Remark 3.13:

For d = 2, the orthogonal Tucker format is equivalent to the singular value decom-
position (SVD) of a rectangular matrix. On the other hand, the canonical repre-
sentation is analogous to the rank-R skeleton matrix decomposition. In general,
rank-structured tensor approximations provide rapid multilinear algebra with linear
complexity scaling in the dimension d. Algorithm 3.1 provides the procedure for
transforming a 3D canonical tensor into the Tucker tensor format in order to de-
termine the corresponding low-rank approximation. The Tucker-to-canonical (T2C)
transform can be found in [79]. ♦

Remark 3.14:

It is worth noting that numerical studies in [79] established that the ALS step in
the C2T transform in Algorithm 3.1 is usually not required for the case of tensors
obtained through the grid-based representation of functions which describe physical
quantities in electronic structure calculations. In such cases, only the RHOSVD
approximation of the canonical tensor suffices. On the other hand, the C2T transform
can be significantly accelerated using the multigrid C2T transform [79, 82]. ♦

3.2.1. Canonical tensor representation of the Newton kernel

Nonlinear separable approximations of the analytic kernels by using sums of Gaussian
functions have been presented in the mathematical and chemical literature [23, 24,
25]. The grid-based method for the canonical tensor representation of a spherically
symmetric Newton kernel function p(‖x̄‖) = 1/‖x̄‖, x̄ ∈ Rd by using sinc approximation
method was introduced in [56]. In [19], the efficient numerical scheme for grid-based
low-rank approximation of the Newton kernel in 3D was introduced and implemented.
It is based on the projection onto a set of tensor-product piecewise constant basis
functions. The canonical representations of the Newton 1/‖x̄‖, and Yukawa e−λ‖x̄‖/‖x̄‖
kernels have been presented in [19], where the kernels were discretized by the Galerkin
projection onto the tensor-product piecewise polynomial basis functions. In this work,
we use the collocation-projection discretization due to their cheap computational costs
over the Galerkin methods, [84].
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Algorithm 3.1: Canonical-to-Tucker transform, [15]

Data: Side matrices U(`) = [u1
(`) . . .uR

(`)] ∈ Rn`×R, ` = 1, 2, 3, comprising of the vectors uk
(`) ∈ Rn` ,

k = 1, . . . , R; maximal Tucker-rank parameter r; maximal number of the ALS iterations mmax (usually
a small number).

Result: The Tucker core tensor β and the orthogonal side matrices Z̃`, ` = 1, 2, 3.
1 Compute the SVD of the side matrices:

U(`) = Z(`)D(`)V (`), ` = 1, 2, 3.

Truncate the singular vectors in Z(`) and the corresponding singular values up to the given rank threshold to

obtain small orthogonal matrices Z
(`)
0 ∈ Rn`×r` , and D`,0 ∈ Rr`×r` , ` = 1, 2, 3.

2 Project U(`) onto the orthogonal basis set defined by Z
(`)
0

U(`) 7→ Ũ(`) = (Z
(`)
0 )TU(`) = D`,0V

(`)T

0 , Ũ(`) ∈ Rr`×R, ` = 1, 2, 3

and compute U0
(r)

using the formula U 7→ U0
(r)

= β ×1 U
(1)
0 ×2 U

(2)
0 ×3 U

(3)
0 .

3 (Finding dominating spaces). Implement the ALS iteration in step (4) mmax times at most, starting from the

RHOSVD initial guess U0
(r)

4 for ` = 1, 2, 3: ALS iteration do
� For ` = 1: construct the partially projected image of the full tensor,

U 7→ Ũ1 =
R∑
k=1

cku
(1)
k ⊗ ũ

(2)
k ⊗ ũ

(3)
k , ck ∈ R. (∗)

Here, u
(1)
k ∈ Rn1 is in the physical space for mode ` = 1, while ũ

(2)
k ∈ Rr2 and ũ

(3)
k ∈ Rr3 , the

column vectors of Ũ(2) and Ũ(3), respectively, live in the index sets of Z`-projections.

� Reshape the tensor Ũ1 ∈ Rn1×r2×r3 into a matrix MU1
∈ Rn1×(r2r3), representing the span of

the optimized subset of mode-1 columns of the partially projected tensor Ũ1.
Compute the SVD of MU1 :

MU1 = Z(1)S(1)V (1),

and truncate the set of singular vectors in Z(1) 7→ Z̃(1) ∈ Rn×r1 , according to the restriction on
the mode-1 Tucker rank, r.

� Update the current approximation to the mode-1 dominating subspace, Z
(1)
r1 7→ Z̃(1).

� Implement the single step of the ALS iteration for mode ` = 2 and ` = 3.

5 Repeat the complete ALS iteration mmax times to obtain the optimized Tucker orthogonal side matrices Z̃(1),

Z̃(2), Z̃(3), and final projected image Ũ3.

6 Project the final iterated tensor Ũ3 in (∗) using the resultant basis set1 in Z̃(3) to obtain the core tensor,

β ∈ Rr1×r2×r3 .

1A basis set is a group of linearly independent vectors which span a given vector space [100].
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Definition 3.15 (Newton potential):

The Newton potential of an integrable function (or a Radon measure) f with compact
support in R3 is defined as the convolution

u(x̄) = ΓN ∗ f(x̄) =

∫
R3

ΓN(x̄− ȳ)f(ȳ)dy, (3.14)

where the Newton kernel ΓN = 1/‖x̄‖, has a mathematical singularity at the origin,
and ȳ ∈ R3 [116]. The Newton potential u(x̄) satisfies the Poisson equation

−∆u = f, in R3. (3.15)

♦

Consider the single particle Newton potential (or the Newton kernel) 1/‖x̄‖, x̄ ∈
R3, which is a fundamental solution to the Poisson equation. It is well known that
determining a weighted sum of interaction potentials (or Newton kernels), PN(x̄) in a
large Nm-particle system, with the particle locations at x̄i ∈ R3, i = 1, ..., Nm, i.e.,

PN(x̄) =
Nm∑
i=1

qi
εm‖x̄− x̄i‖

, x̄i, x̄ ∈ Ω = [−b, b]3, (3.16)

is quite computationally demanding. The Newton kernel exhibits a slow polynomial
decay in 1/‖x̄‖ as ‖x̄‖ → ∞. Consequently, it has a singularity at x̄ = (0, 0, 0), making
its accurate grid representation difficult. The RS tensor format [17] can be exploited to
construct an efficient technique for the grid-based calculation of PN(x̄) in multiparticle
systems.

Remark 3.16:

Notice that the Newton potential PN(x̄) in (3.16) is a special case of (3.14) for a
non-compact function

f(x) =
1

εm

Nm∑
i=1

qiδ(x̄− x̄i). (3.17)

♦

To obtain the canonical tensor representation of the Newton kernel, we follow [17]
and consider the computational domain Ω = [−b, b]3, and introduce the uniform (n⊗3)2

rectangular Cartesian grid Ωn with mesh size h = 2b/n (n even). Let {ψi} be a set of
tensor-product piecewise constant basis functions as in Definition 3.17, for the 3-tuple
index i = (i1, i2, i3), i` ∈ I` = {1, ..., n}, ` = 1, 2, 3. Here, the symbol

∏
is the pi-

product for elementwise multiplication. The goal is to discretize the Newton kernel by

2n⊗3 = n× n× n is a tensor representation of the 3D Cartesian grid.
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its projection onto {ψi} as follows

P := [pi] ≡ [p(i1, i2, i3)] ∈ Rn⊗3

, pi =

∫
R3

ψi(x̄)

‖x̄‖ dx̄, (3.18)

where pi is obtained from the vectors of the canonical tensor representation of the
Newton kernel.

Definition 3.17 (Tensor-product basis functions):

The tensor-product piecewise constant basis functions ψi associated with the equidis-
tant tensor-product lattice ωd := ω1 × · · · × ωd of size h = 2b/n are given by

ψi(x̄) =
d∏
`=1

ψ
(`)
i`

(x`), with x` ∈ Ω`, ` := 1, . . . , d, (3.19)

for the 3-tuple index i = (i1, i2, i3), i` ∈ I = {1, . . . , n}. Here, ψ
(`)
i`

= χΩi`
is the

characteristic function of Ωi` [84]. ♦

We provide in Algorithm 3.2 the procedure for determining the low-rank canonical
decomposition of P based on the exponentially convergent sinc-quadrature approxima-
tion of the Gaussian (or Laplace-Gauss) transform to the Newton kernel [17, 81].

Note that the skeleton vectors p
(`)
k ∈ Rn can be renumerated by k 7→ q = k+M + 1,

p
(`)
k 7→ p

(`)
q , where q = 1, . . . , R and ` = 1, 2, 3. The canonical tensor PR (3.27)

approximates the discretized 3D symmetric Newton kernel 1
‖x̄‖ , centered at the origin

such that p
(1)
q = p

(2)
q = p

(3)
q , (q = 1, . . . , R). In this case, the terms p

(`)
k and p

(`)
−k are

equivalent and hence the sum in (3.27) reduces to k = 0, 1, . . . ,M , which implies that
R = M + 1.

The canonical vectors in the tensor representation (3.27) for the Newton kernel along

the x-axis from a set {p(1)
q }Rq=1 are displayed in Figure 3.6. It is clearly evident that

there are canonical vectors representing the short-, intermediate-, and the long-range
components of the total electrostatic potential. This fascinating feature was recog-
nized in [81], for the rank-structured tensor approximation of the grid-based lattice
summation of electrostatic potentials.

In the next section, we present the procedure of splitting (separating) the vectors of
the canonical tensor representation into the short- and long-range parts. The Newton
(Coulomb) electrostatic potential can then be obtained by transforming the respective
canonical vectors back to the original tensor format, as in Figure 3.6 (left).
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(a) Newton potential.

−40 −20 0 20 40
0

5 · 10−2

0.1

(b) Total canonical vectors.

Figure 3.6.: The Newton electrostatic potential (a), and the vectors of the canonical
tensor representation (b) for the Newton kernel for n = 1024 and R = 20.

3.3. Range-separated (RS) canonical/Tucker tensor
format

In the recent years, tensor-based approaches were suggested as new methods for the cal-
culation of multiparticle long-range interaction potentials [79, 81]. For a given non-local
generating kernel p(‖x̄‖), x̄ ∈ R3, the calculation of the weighted sum of interaction
potentials in an N -particle system, with the particle locations at x̄ν ∈ R3, ν = 1, ..., N ,

P (x̄) =
∑N

ν=1
zν p(‖x̄− x̄ν‖), zν ∈ R, x̄ν , x̄ ∈ Ω = [−b, b]3, (3.20)

is computationally demanding for large N .

Since the generating radial basis function p(‖x̄‖) exhibits a slow polynomial decay in
1/‖x̄‖ as ‖x̄‖ → ∞, it follows that each individual term in (3.20) contributes essentially
to the total potential at each point in the computational domain Ω. This predicts
the O(N) complexity for a straightforward summation at every fixed space point x̄ ∈
R3. Moreover, in general, the radial function p(‖x̄‖) has a singularity or a cusp at
the origin, x̄ = 0, making its accurate grid representation problematic. An efficient
numerical scheme for the grid-based calculation of P (x̄) in multiparticle systems can
be constructed by using the RS tensor format [17].

3.3.1. RS tensor splitting of a single Newton kernel

Following the definition of the quadrature in (3.22) and (3.23), we can clearly notice that
the full set of Gaussian (quadrature) approximations include two classes of functions.
The first set contains the short-range functions which are characterized by their small
“effective support”. The second set are the smooth long-range functions which are
characterized by their global support. The range-separated tensor format is a new
scheme which was recently developed in [15, 17] with the aim of independent grid-based
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low-rank tensor representation of the localized and global parts in the target tensor
allowing for the efficient numerical approximation of N -particle interaction potentials.

Algorithm 3.2: Low-rank canonical decomposition of PR in (3.18) [17, 86]
Data: The Newton kernel 1/‖x̄‖, tensor product basis functions ψi(x̄) and the computational domain Ω.
Result: PR.

1 Determine the Gaussian transform to the Newton kernel in R3,

1

‖x̄‖ =
2√
π

∫
R
e−t

2‖x̄‖2dt =
1√
π

∫
R

3∏
`=1

e−t
2(x`)2dt for ‖x̄‖ > 0. (3.21)

2 For any fixed x̄ = (x1, x2, x3) ∈ R3, apply sinc-quadratures, see [19, 56] for details, to approximate the
Gaussian transform in (3.21), i.e.,

1

‖x̄‖ =
2√
π

∫
R+

e−t
2‖x̄‖2dt ≈

M∑
k=−M

gke
−t2k‖x̄‖

2
=

M∑
k=−M

gk

3∏
`=1

e−t
2
kx̄

2
` . (3.22)

The quadrature parameters (quadrature points and weights) in (3.22) are given by

tk = khM , gk = 2hM/
√
π, with hM = C0 log(M)/M, C0 ≈ 3. (3.23)

Under the assumption that 0 < a ≤ ‖x‖ ≤ A <∞, the quadrature provides an exponential convergence rate
in M for a class of analytic functions p(‖x‖), i.e.,

∣∣∣∣p(‖x‖)− M∑
k=−M

gke
−t2k‖x‖

2
∣∣∣∣ ≤ C

a
e−β
√
M with some C, β ∈ R+. (3.24)

3 If we combine (3.18) and (3.22) and consider the separability of the Gaussian basis functions, we obtain the
low-rank approximation to each entry of the tensor P:

pi ≈
M∑

k=−M
gk

∫
R3
ψi(x)e−t

2
k‖x‖

2
dx =

M∑
k=−M

gk

3∏
`=1

∫
R
ψ`i` (x`)e

−t2kx
2
` dx`. (3.25)

Let us recall that gk > 0 and define the vector

p
(`)
k = g

1/3
k [b

(`)
i`

(tk)]
n`
i`
∈ Rn` , b

(`)
i`

(tk) =

∫
R
ψ`i` (x`)e

−t2kx
2
` dx`. (3.26)

4 Then the 3rd order tensor P can be approximated by the R-term (R = 2M + 1) canonical representation,

P ≈ PR =

M∑
k=−M

gk

3⊗
`=1

b(`)(tk) =

M∑
k=−M

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k ∈ Rn×n×n. (3.27)

For some threshold ε > 0, M can be chosen as the minimal number such that the following max-norm holds,

‖P−PR‖ ≤ ε‖P‖. (3.28)

Due to the symmetry of the Newton kernel, the sum in (3.27) reduces to k = 0, . . . ,M .
From (3.23), we notice that the sequence of quadrature points {tk} can be split into
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3.3. Range-separated (RS) canonical/Tucker tensor format

two subsequences i.e., T := {tk|k = 0, . . . ,M} = Tl ∪ Ts with

Tl := {tk|k = 0, 1, . . . , Rl}, and Ts := {tk|k = Rl + 1, . . . ,M}, (3.29)

where Tl includes quadrature points tk which are condensed “near” zero, thereby gen-
erating the smooth and global long-range Gaussians, the so-called low-pass filters [17].
On the other hand, Ts accumulates the increasing in M → ∞ sequence of “large”
sampling points tk with the upper bound C2

0 log2(M) which corresponds to the local-
ized short-range Gaussians, the so-called high-pass filters. The quasi-optimal choice of
C0 ≈ 3 was determined in [19].

The additive decomposition of the canonical tensor PR generated by the splitting in
(3.29), i.e., PR = PRs + PRl , where

PRs =
∑
tk∈Ts

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k , PRl =

∑
tk∈Tl

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k . (3.30)

Remark 3.18:

The choice of the critical number Rl = #Tl−1 (or equivalently, Rs = #Ts = M−Rl)
that specifies the splitting T = Tl ∪ Ts is determined by the active support of the
short-range part of the total electrostatic potential, such that the functions pk(x),
tk ∈ Ts vanish outside of the sphere Bσ of radius σ > 0 subject to a certain threshold
δ > 0 [17]. ♦

Following [17], for a given σ, we recall two basic criteria, corresponding to the max-
norm and L1-norm estimates which can be applied in order to obtain Rl. For the
max-norm criterion, we have

Ts =
{
tk : gke

−t2kσ2 ≤ δ
}
⇐⇒ Rl = min

{
k : gke

−t2kσ2 ≤ δ
}
. (3.31)

On the other hand, the criterion corresponding to the L1-norm estimate reads

Ts =

{
tk : gk

∫
Bσ

e−t
2
kx

2

dx ≤ δ

}
⇐⇒ Rl = min

{
k : gk

∫
Bσ

e−t
2
kx

2 ≤ δ

}
. (3.32)

The quantitative estimates of Rl are determined by invoking the explicit equation
(3.23) for the quadrature parameters. For instance, in the case C0 = 3 and g(t) = 1,
the criterion in (3.31) implies that Rl solves the equation(

3Rl logM

M

)2

σ2 = log

(
hM
δ

)
. (3.33)

Remark 3.19:

Note that the criteria (3.31) and (3.32) may be modified and tailored to particular
applications [17]. For instance, the parameter σ may be associated with the van der
Waal radii (interatomic distance) in the molecular system of interest in electronic
structure calculations. ♦
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Newton potential

Total canonical vectors
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Long-range canonical vectors
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Short-range potentialLong-range potential

Figure 3.7.: The canonical tensor representation of the single Newton kernel (1/‖x̄‖)
and its subsequent splitting into the long-and short-range components by
the range-separated (RS) tensor format, and their corresponding transfor-
mations into the full tensors [17].
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−40 −20 0 20 40
0

5 · 10−2

0.1

(a) Short-range vectors.
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10−2

10−1

100

(b) Log plot for Figure 3.8a.

Figure 3.8.: The short-range vectors of the canonical tensor representation for n = 1024,
R = 20, and Rl = 12 [17].

As demonstrated in [17], consider the splitting of the tensor PR = PRs+PRl in (3.30)
for the representation of the Newton kernel 1

‖x̄‖ on the 40 × 40 × 40 domain size with
the parameters R = 20, Rl = 12, and Rs = 8, respectively. Employing the criterion
(3.31) and considering δ ≈ 10−5, the effective support for this splitting is obtained by
σ = 2 as shown in Figure 3.7 and Figure 3.8. Details can be found in [15, 17].

Remark 3.20:

Notice from Figure 3.8a, that the short-range vectors are located in an effective
support of σ ≈ 2Å. Outside this radius, intermediate vectors begin to scatter into
the long-range regime, see Figure 3.7. A domain of [−40, 40]3 was used to compute
the results in Figure 3.7 and Figure 3.8. ♦

The aforementioned results are only valid for a single particle potential (or the New-
ton kernel, 1/‖x̄‖). In the case of a potential sum generated by a multiparticle system,
for example, in (3.16), the two components in (3.30) are treated independently due to
their differences as far as their effective supports are concerned [17]. The following is
an overview of the RS canonical tensor representation of PN(x̄) in (3.16).

3.3.2. RS tensor splitting of multiparticle systems

Here, we provide an overview of the techniques for modeling of the long-range interac-
tion potential in multiparticle systems of general type by the RS tensor format which
were introduced in [17]. First, we introduce the n × n × n grid Ωn in Ω = [−b, b]3, as

well as the auxiliary 2n× 2n× 2n grid Ω̃2n, where Ω̃2n = 2Ω. We denote the canonical
rank-R representation of 1/‖x̄‖ on Ω̃2n, and its restriction onto Ωn by P̃R and PR,
respectively.

Then the optimal splitting (3.30) is applied to the reference canonical tensor PR and
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to its accompanying version P̃R, such that

P̃R = P̃Rs + P̃Rl ∈ R2n×2n×2n. (3.34)

To mitigate the complexity related to the linear growth of the ranks with respect to the
number of particles because of the short-range components (which are non-reducible
in both canonical and Tucker tensor formats), we treat the two components in (3.34)
independently [17].

Therefore, we first consider the global tensor decomposition of only the long-range
part PRl ∈ Rn⊗3

which can be constructed by a direct sum of shift-and-windowing

transforms, Wν , of the reference tensor P̃Rl . Interested readers are referred to [17, 81]
for more details. We have

Pl =
Nm∑
ν=1

zν Wν(P̃Rl) =
Nm∑
ν=1

zν Wν(
∑
k∈Kl

p̃
(1)
k ⊗ p̃

(2)
k ⊗ p̃

(3)
k ). (3.35)

The shift-and-windowing transform Wν maps a reference tensor P̃Rl ∈ R2n×2n×2n onto

its sub-tensor of smaller size n⊗3, obtained by first shifting the center of P̃Rl to the
grid-point x̄ν , and then restricting (windowing) the result onto the computational grid
Ωn, see [81]. The particle charges are denoted by zν . The canonical rank of the tensor
sum Pl, of rank RNm, was proven in [17] to depend only logarithmically on the number
of particles Nm involved in the summation. Therefore, it is expected that the large
initial rank of Pl to be significantly reduced to some value R∗ � RNm, which is almost
independent of Nm.

Remark 3.21:

It is worth noting that for large biomolecules, the rank RNm and the n⊗3 Cartesian
grid can be very large due to large Nm. In such cases, the canonical-to-Tucker
(C2T) and the Tucker-to-canonical (T2C) transforms can be applied in order to
obtain a low rank canonical tensor representation which accurately approximates the
original tensor. The C2T transform employs the reduced higher order singular value
decomposition (RHOSVD) to accomplish the rank reduction process [82]. ♦

On the other hand, the short-range component of the total potential is represented
in the RS format, by a single small size tensor, referred to as the cumulated canonical
tensors (CCT), which is supplemented by a list of the particles’ coordinates. Before we
define the CCT, we first define the concept of well-separability of the point set, which
controls the trade-off between the numerical efficiency and the approximation quality
of the short-range component in the collective potential sum. Interested readers are
referred to [17] for detailed information.
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Definition 3.22 (Well-separable point distribution, see Definition 3.2 in [17].):

Given a constant σ∗ > 0, a set S = {x̄ν} of points in Rd is called σ∗-separable if

d(x̄ν , x̄ν′ ) := ‖x̄ν − x̄ν′‖ ≥ σ∗ for all ν 6= ν
′
. (3.36)

♦

The definition in (3.36) holds for non-bonded atoms, for instance in protein and
crystals, where the van der Waal’s radii are well defined. The CCT relies on this
property in order to provide an accurate approximation of the short-range potential
sum.

Definition 3.23 (CCT, see Definition 3.4 in [17]):

Given a set of sources J = {j(ν) := (j
(ν)
1 , j

(ν)
2 , . . . , j

(ν)
d )}, j(ν)

` ∈ I`, and σ∗ > 0, choose

the width parameter γ ∈ N from the relation γh ≤ σ∗ s.t. J
(ν)
γ ∩ J(ν

′
)

γ = ∅, ν 6= ν
′
. A

rank-R0 CCT tensor Ps ∈ RI , associated with J and γ, is defined as

Ps =
Nm∑
ν=1

zνUν with rank(Uν) ≤ R0, (3.37)

where canonical tensors Uν = [uj] are vanishing beyond the γ-vicinity of j(ν): uj = 0

for j ⊂ I \ J(ν)
γ , ν = 1, . . . , Nm. ♦

Definition 3.24 (Uniform CCT, see Definition 3.7 in [17]):

We refer to a CCT tensor in (3.37) as uniform if all components Uν are generated

by a single rank-R0 tensor U0 =
∑R0

m=1µmû
(1)
m ⊗ · · · ⊗ û

(d)
m s.t. Uν |J(ν)

δ
= U0. ♦

For the given separation parameter γ ∈ N, which is used to partition the canonical
vectors into the short-and long-range parts, the RS-canonical tensor format specifies
the class of d-tensors A ∈ Rn1×···×nd , which can be represented as a sum of a rank-
R canonical tensor Pl =

∑R
k=1ξku

(1)
k ⊗ · · · ⊗ u

(d)
k ∈ Rn1×...×nd and a uniform CCT

P̂s =
∑Nm

ν=1zνUν generated by U0 with rank(U0) ≤ R0,

A =
R∑
k=1

ξku
(1)
k ⊗ · · · ⊗ u

(d)
k +

Nm∑
ν=1

zνUν , (3.38)

where diam(suppUν) ≤ 2γi. Here, γi is the atomic radius of each atom in the biomolecule.
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Remark 3.25:

Notice that for biomolecules whose atoms have varying radii, we adjust the com-
putation of the short- and long-range range electrostatic potential accordingly by
assigning the corresponding vectors from Figure 3.7 and Figure 3.8 to atomic clus-
ters of similar radii [99]. ♦

3.4. Conclusions

In this chapter, we have briefly discussed the fundamentals of multilinear algebra fol-
lowed by an extensive discussion of the novel RS tensor format, which was then applied
to the splitting of both the single Newton kernel and to the sum of Newton kernels aris-
ing from multiparticle potential systems. The efficient construction of a regularization
scheme for the PBE by the RS tensor format is discussed in Chapter 4.
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REGULARIZATION OF THE

POISSON-BOLTZMANN EQUATION USING

THE RANGE-SEPARATED TENSOR FORMAT
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4.1. Introduction

This chapter provides the main contribution of this thesis to the theory of the Poisson-
Boltzmann equation (PBE), as far as solution decomposition techniques are concerned,
by efficiently constructing a regularization scheme for the PBE in order to obtain a
regularized PBE (RPBE) model which only solves for the long-range electrostatic po-
tential, thereby avoiding the numerical approximation of the singular sources, which
increases the accuracy. This is accomplished by the splitting of the Dirac delta distribu-
tion and the substitution of the singular sources by a smooth and regularized function.
We begin the chapter by first applying the range-separated tensor format from Chap-
ter 3 in order to construct an efficient regularization scheme for the Poisson equation
in Section 4.2 as a proof of concept. In Section 4.3, we extend the RS tensor based
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regularization scheme to both the linear and the nonlinear PBE and provide existence
and uniqueness of solutions for the nonlinear PBE. We wind up the chapter by dis-
cussing the profound advantage of the RS tensor format for the efficient and accurate
computation of electrostatic energies and forces in Section 4.4.

4.1.1. Application of RS tensor format for solving the PBE

The RS tensor format can be gainfully applied in computational problems which in-
clude functions with multiple local singularities or cusps, Green kernels with essentially
non-local behavior, as well as in various approximation problems treated by means of
radial basis functions. In what follows, we describe the new approach for the construc-
tion of computationally effective boundary/interface conditions and right-hand sides
in the Poisson-Boltzmann equation (PBE) describing the electrostatic potential of a
biomolecule in gas phase and in solvent by solving the FEM/FDM discretization of
the regularized PBE. This approach is based on the use of the RS decomposition of
the Dirac delta distribution which was introduced in [85]. The main advantage of our
approach is due to complete avoidance of the direct FEM/FDM approximation (inter-
polation) of the highly singular right-hand sides in the traditional formulation of the
PBE and, at the same time, preventing the modification of the stiffness matrix and/or
the continuity conditions across the interface.

4.2. The RS tensor based splitting scheme for the
Poisson equation (PE)

In this section, we present the new splitting scheme which is based on the range sep-
arated representation of the Dirac δ-distribution [85], which comprises of the highly
singular right-hand side in the target PBE (2.15). Following [18], we consider the PE
as proof of concept and validate the numerical results in Chapter 6. The idea is to mod-
ify the right-hand side ρf in such a way that the short-range part in the solution u can
be pre-computed independently by the direct tensor decomposition of the free space
potential, and the initial elliptic equation applies only to the long-range part of the
total potential. The latter is a smooth function, hence the FDM/FEM approximation
error can be reduced dramatically even on relatively coarse grids in 3D.

To fix the idea, we consider the simplest case of the single atom with unit charge
located at the origin, such that the exact electrostatic potential reads u(x̄) = 1

‖x̄‖ ,

x̄ ∈ R3. Recall that the Newton kernel discretized by the R-term sum of Gaussian type
functions living on the n× n× n tensor grid Ωn is represented by a sum of short- and
long-range tensors,

1

‖x̄‖  PR = PRs + PRl ∈ Rn×n×n,

where by definition

PRs =
R∑

k=Rl+1

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k , PRl =

Rl∑
k=1

p
(1)
k ⊗ p

(2)
k ⊗ p

(3)
k . (4.1)
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Let us formally discretize the exact equation for the Newton potential, u(x̄) = 1
‖x̄‖ ,

−∆
1

‖x̄‖ = 4π δ(x̄),

by using the FDM/FEM Laplacian matrix A∆ instead of ∆ and via substitution of
the canonical tensor decomposition PR instead of u(x̄) = 1

‖x̄‖ . This leads to the grid

representation of the discretized Dirac delta [85]

δ(x̄) δh := − 1

4π
A∆PR,

that will be applied in the framework of our RS tensor based discretization scheme.
We remind that the 3D finite difference Laplacian matrix A∆, defined on the uniform

rectangular grid, takes the form

A∆ = ∆1 ⊗ I2 ⊗ I3 + I1 ⊗∆2 ⊗ I3 + I1 ⊗ I2 ⊗∆3, (4.2)

where −∆` = h−2
` tridiag{1,−2, 1} ∈ Rn`×n` , ` = 1, 2, 3, denotes the discrete univariate

Laplacian, such that the Kronecker rank of A∆ equals to 3. Here I`, ` = 1, 2, 3, is the
identity matrix in the corresponding single dimension.

Now we are in the position to describe the RS tensor-based splitting scheme. To that
end, we use the splitting of the discretized δ-distribution into short- and long-range
components in the form [18, 85],

δh = δs + δl, (4.3)

where

δs := − 1

4π
A∆PRs , and δl := − 1

4π
A∆PRl . (4.4)

We observe that by construction, the short range part vanishes on the interface Γ, hence
it satisfies the discrete Poisson equation in Ωm with the respective right-hand side in
the form δs and zero boundary conditions on Γ. Then we deduce that this equation can
be subtracted from the full discrete linear system, such that the long-range component
of the solution, PRl , will satisfy the same linear system of equations (same interface
conditions for the coefficients), but with a modified right-hand side corresponding to
the weighted sum of the long-range tensors δl only. In the simple example of the single
charge, we arrive at the particular discrete Poisson equation for the long-range part in
the full potential PR, Ul = PRl ,

−A∆Ul = δl, (4.5)

which can be solved by an appropriate iterative method.
Figure 4.1 illustrates the modified right hand side representing the long-range part

of the discrete Dirac delta δl. It it worth noting that the FEM approximation theory
could be applied to this formulation since the input data (i.e., the right-hand side) are
regular enough. However, it is not the case for the initial formulation with the highly
singular Dirac delta distribution in the right-hand side.
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4. Regularization of the PBE using the RS tensor format

Figure 4.1.: The long-range part of the Dirac delta δl on an n⊗3 3D grid, n = 256.

This scheme can be easily extended to the case of many-atomic systems just by addi-
tive representation of the short- and long-range parts in the total free space potential,

−A∆PRl = δRL , (4.6)

where we suppose that RL is the rank of the long-range part PRl of the corresponding
RS tensor of type (3.38), and δRL is calculated as shown in (4.8).

4.2.1. Benefits of the RS tensor based regularization for the PE

We summarize the following benefits of the RS tensor based solution decomposition
scheme for the PE.

� Most important is that due to efficient splitting of the short- and long-range parts
in the target tensor representing both the single Newton kernel and the total free-
space potential, the singular component (short-range part) does not contribute
to the jump condition at the interface.

� A remarkable advantage is that the long-range part in the RS tensor decompo-
sition of the Dirac-delta distribution [85] vanishes at the interface and, hence,
the modified right-hand side generated by this long-range component remains
localized in the ”linear” solute region.

� The boundary conditions are obtained from the long-range part in the tensor
representation of the collective electrostatic potential which reduces the compu-
tational costs involved, in contrast to solving the equation with some analytical
function used to define the boundary condition.

� Only a single system of algebraic equations is solved for the smooth long-range
(i.e., regularized) part of the collective potential discretized with controllable pre-
cision on a relatively coarse grid, which is then added to the directly precomputed
(avoiding PDE solutions) low-rank tensor representation for the short-range con-
tribution.
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4.3. The RS tensor based regularization scheme for the PBE

Notice that the MATLAB representation of the matrix A∆ (say, the FD matrix) can
be easily described in terms of kron operations as follows

A∆ = kron(kron(∆1, I), I) + kron(kron(I,∆1, I) + kron(kron(I, I),∆1), (4.7)

applied to a long vector of size n3 representing the Newton potential.
Then the rank-structured calculation of the “collective” right-hand side δRL in (4.6)

is reduced to one-dimensional operations,

−δRL =

RL∑
k=1

ξk∆1a
(1)
k ⊗a

(2)
k ⊗a

(3)
k +

RL∑
k=1

ξka
(1)
k ⊗∆1a

(2)
k ⊗a

(3)
k +

RL∑
k=1

ξka
(1)
k ⊗a

(2)
k ⊗∆1a

(3)
k ,

(4.8)

where a
(1)
k are the canonical vectors and RL is the canonical rank of the long-range part

of the collective electrostatic free space potential of a biomolecule computed in the RS
tensor format (3.38).

This is the tensor ansatz to be used as the right-hand side in the equation (4.5), which
we apply in numerical experiments. With a subsequent usage of the canonical-to-full
tensor transform and after reshaping a three-tensor into a long vector, δRL is applied
in a standard PBE iterative solver as the RHS for the long-range part.

Remark 4.1:

Another advantage of our scheme is that the short-range part of the solution in the
PBE (2.15) is obtained for free, since it is merely incorporated as the set of short-
range parts of the respective Newton potentials for every particle in a biomolecule.
That corresponds to a set of tensors in the second term of the collective electrostatic
potential in the RS tensor format (3.38). ♦

4.3. The RS tensor based regularization scheme for the
PBE

In this section, we extend the new regularization scheme based on the RS tensor format
to both the linearized and nonlinear PBE, which are characterized by the presence of
inhomogeneous (or jumping) coefficients. The idea is to modify the right-hand side of
(2.15), in such a way that the short-range part in the solution u can be pre-computed
independently by the direct tensor decomposition of the free space potential, and the
initial elliptic equation (or the RPBE) applies only to the long-range component of the
total potential. The latter is a smooth function, hence the FDM/FEM approximation
error can be reduced dramatically even on relatively coarse grids in 3D.

To fix the idea, we first recall the weighted sum of interaction potentials in a large
N -particle system as in (3.16) generated by the Newton kernel, 1/‖x̄‖, at each charge
location x̄i, x̄ ∈ R3, i.e.,

PN(x̄) =
Nm∑
i=1

qi
εm

1

‖x̄− x̄i‖
, (4.9)
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4. Regularization of the PBE using the RS tensor format

We also recall that the sum of Newton kernels for a multiparticle system discretized
by the R-term sum of Gaussian type functions living on the n⊗3 tensor grid Ωn is
represented by a sum of long-range tensors in (3.35) and a CCT tensor in (3.37),
respectively.

We now have sufficient information to facilitate the construction of the NRPBE
based on the simple splitting of the Dirac delta distribution [85]. To fix the idea, from
Remark 3.16, the weighted sum of interaction potentials in a large Nm-particle system
as in (3.16) is also the analytical solution to the Poisson equation (PE), i.e.,

−εm∆PN(x̄) =
Nm∑
i=1

qiδ(x̄− x̄i) in R3. (4.10)

Consider the RS tensor splitting of the multiparticle Newton potential into a sum of
long-range tensors Pl in (3.35) and a CCT tensor Ps in (3.37), i.e.,

PN(x̄) = Ps(x̄) + Pl(x̄). (4.11)

Substituting each of the components of (4.11) into the discretized Poisson equation,
we derive the respective components of the molecular charge density (or Dirac-delta
distributions) as follows

f s := −A∆Ps, and f l := −A∆Pl, (4.12)

where A∆ is the 3D finite difference Laplacian matrix defined in (4.2).
Figure 4.2 depicts the behaviour of the modified representations of both the smooth

and singular components of the Dirac delta distributions using the formula in (4.12).
The charge density data is obtained from protein fasciculin 1, an anti-acetylcholinesterase
toxin from green mamba snake venom [104]. Notice from the highlighted data cursors,
that both the functions are localized within the molecular region, with values dropping
to zero outside this region. Furthermore, the Figure 4.2a represents the function in
(4.12) which we utilize to derive a regularized PBE model (RPBE) in the next step.

The nonlinear regularized PBE (NRPBE) can now be derived as follows [99]. First,
the unknown solution (or target electrostatic potential) u to the PBE (2.15) can be
decomposed as u = us + ur, where us is the known singular function (or short-range
component) and ul is the unknown long-range component to be determined. Therefore,
the PBE (2.15) can be rewritten as

−∇ · (ε∇(us + ur)) + κ̄2 sinh(us + ur) = f s + f l in R3,

us + ur = g, on ∂Ω,

}
(4.13)

where g is the Dirichlet boundary conditions defined in (2.36).
It was proved in [85] and demonstrated in [18] that the function f s and the corre-

sponding short-range potential us are localized within the molecular region Ωm and
vanishes on the interface Γ. Moreover, in the PBE (2.15), the function κ̄ is piece-
wise constant as defined in (2.18), and κ̄ = 0 in Ωm. Therefore, we can rewrite the
Boltzmann distribution term in (4.13) as

κ̄2 sinh(us + ur) = κ̄2 sinh(ur), because us = 0 in Ωs. (4.14)
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4.3. The RS tensor based regularization scheme for the PBE

(a) Long-range part of charge density. (b) Short-range part of charge density.

Figure 4.2.: The long- and short-range parts of the charge density for protein Fasciculin
on 129⊗3 grid.

Consequently, following the splitting of the Dirac-delta distributions in (4.12), the
short-range component of the potential satisfies the Poisson equation, i.e.,

−∇ · (εm∇us) = f s in R3. (4.15)

Subtracting (4.15) from (4.13) and substituting (4.14), we obtain the nonlinear reg-
ularized PBE (NRPBE) as follows

−∇ · (ε∇ur(x̄)) + κ̄2(x̄) sinh(ur(x̄)) = f l, in Ω, (4.16)

subject to the Dirichlet boundary conditions in (2.36). The total solution to the NRPBE
is therefore, obtained by u(x̄) = us(x̄) + ur(x̄).

We conclude with the following result.

Lemma 4.2:

Let the short- and long-range components of the electrostatic potential of the PBE
(2.15) be given by us and ur, respectively. Then the following statements are true

(a) us = Ps.

(b) ur 6= Pl, but ur satisfies the NRPBE in (4.16). ♦

Proof. (a) Recall the decomposed PBE (4.13) and the NRPBE (4.16). Subtracting
the two equations and applying (4.14), we obtain the PE model for the short-range
potential in (4.15). Substituting the first equation of (4.12) into the right-hand side
of (4.15), yields

−∇ · (εm∇us) = −A∆Ps, (4.17)

where Ps is the CCT tensor in (3.37), which represents the precomputed short-range
potential sum. We conclude that us = Ps, which completes the proof of (a).
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4. Regularization of the PBE using the RS tensor format

(b) Here, we subtract the PE (4.15) from the decomposed PBE (4.13) to obtain the
NRPBE (4.16). Substituting the second equation of (4.12) into the right-hand side
of (4.16) yields

−∇ · (ε∇ur) + κ̄2 sinh(ur) = −A∆Pl, (4.18)

which implies that ur 6= Pl, thereby completing the proof of (b).

The total solution to the NRPBE is therefore obtained by u(x̄) = us(x̄) + ur(x̄).
The LPBE in (2.21) can also be regularized in a similar way as in (4.16) to obtain

the following LRPBE

−∇ · (ε∇ur(x̄)) + κ̄2(x̄)ur(x̄) = f l, in Ω, (4.19)

subject to the Dirichlet boundary conditions in (2.36).

4.3.1. Existence and uniqueness of solutions to the NRPBE

We here briefly discuss the existence and uniqueness of the solution to the nonlinear
regularized (continuous) PBE (NRPBE) for monovalent electrolytes. This is an exten-
sion of the results in [30] wherein a different regularization scheme was applied to the
NPBE (see (2.48) in Section 2.6). We begin by considering the weak formulation of
the NRPBE via integration by parts, on the assumption that f l is far away from the
boundary ∂Ω (i.e., f l is localized within the molecular region), see Figure 4.2. Hence,
we seek to find

u ∈M := {z ∈ H1(Ω) s.t. ez, e−z ∈ L2(Ωs), and z = g on ∂Ω}
such that

A(u, υ) + (B(u), υ) + 〈f l, υ〉 = 0, ∀ υ ∈ H1(Ω), (4.20)

where

� A(u, υ) = (ε∇u,∇υ),

� (B(u), υ) = (κ̄2 sinh(u), υ), and

� 〈f l, υ〉 =
∫

Ω
f lυdV .

Next, we now define the electrostatic free energy functional on M [30]:

E[φ] =

∫
Ω

[ ε
2
|∇φ|2 + 〈f l, φ〉+ κ̄2 cosh(φ)

]
dV, φ ∈ M. (4.21)

The following result establishes the existence and uniqueness of solutions to the
NRPBE.

Lemma 4.3 (NRPBE: Existence and uniqueness, [30]):

There exists a unique solution u ∈ M ⊂ H1(Ω) which minimizes the electrostatic
free energy functional E, that is,

E(u) = inf
φ∈M

E[φ].
♦
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Proof. From (4.21), it is easy to notice that E(φ) is differentiable in M , i.e.,

〈DE(u), υ〉 = A(u, υ) + (B(u), υ) + 〈f l, υ〉.

In order to prove the existence of the minimizer, we need only to verify the following:

(a) M is a convex set,

(b) E is convex on M , and

(c) lim
‖υ‖1→∞

E(υ) =∞.

Notice that condition (a) is easy to verify because M ⊂ H1(Ω), and the Sobolev
space containing L2(Ω) is well-known to be convex [39]. Therefore, M is convex. The
verification of condition (b) inherits the convexity of the functions x2 and cosh(x).
In fact, E was proved in Theorem 2.11 to be strictly convex. Finally, the condition
(c) is a consequence of the Poicaré inquality:

E(υ) ≥ C(ε, κ̄)‖υ‖2
1 + C(f l, g), (4.22)

which we can prove as following. Invoking the Young’s inquality, we have for any
δ > 0

〈f l, υ〉 ≤ εs‖f l‖Ωs‖υ‖Ωs ≤
1

δ
‖f l‖2

Ωs + δε2s‖υ‖2
Ωs .

However, since cosh(x) ≥ 0, we have that

E(υ) ≥ C(ε, κ̄)‖υ‖2 − 1

δ
‖f l‖2

Ωs ,

where we can guarantee that C(ε, κ̄) > 0 for sufficiently small δ. Then, we apply
norm equivalence on M to obtain (4.22). Finally, we obtain the uniqueness of the
minimizer from the strict convexity property of E.

4.3.2. The FDM scheme for the regularized nonlinear PBE

Consider the uniform 3D n⊗3 rectangular grid in Ω = [−b, b]3 with the mesh parameters
dx, dy, dz < 0.5. The finite difference discretization of the RPBE in (4.16) leads to the
algebraic system of equations [99]

− 1

dx2
εx
i+ 1

2
,j,k

(uri+1,j,k−uri,j,k)+
1

dx2
εx
i− 1

2
,j,k

(uri,j,k−uri−1,j,k)−
1

dy2
εy
i,j+ 1

2
,k

(uri,j+1,k−uri,j,k)

+
1

dy2
εy
i,j− 1

2
,k

(uri,j,k − uri,j−1,k)−
1

dz2
εz
i,j,k+ 1

2
(uri,j,k+1 − uri,j,k) +

1

dz2
εz
i,j,k− 1

2
(uri,j,k − uri,j,k−1)

+ κ̄2
i,j,k sinh(uri,j,k) = fr, (4.23)

where the dielectric coefficient ε and kappa function κ̄ are assigned according to the
definition of the solvent accessible surface which is calculated by the Connolly approach
[35, 140].
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The coefficient matrix of the NRPBE is a sum of two matrices. The first matrix,
A1, emanates from the Laplacian operator in (4.23) and is assembled from ε, resulting
into a Nx×Ny×Nz by Nx×Ny×Nz seven banded symmetric positive definite matrix
containing the following nonzero elements. The main diagonal elements are given by

d0(p) =

[
1

dx2
εx
i+ 1

2
,j,k

+
1

dx2
εx
i− 1

2
,j,k

+
1

dy2
εy
i,j+ 1

2
,k

+
1

dy2
εy
i,j− 1

2
,k

+
1

dz2
εz
i,j,k+ 1

2
+

1

dz2
εz
i,j,k− 1

2

]
,

(4.24)
where p = (k−1)(Nx)(Ny)+(j−1)(Nx)+i is a natural ordering in which i = 1, . . . , Nx,
j = 1, . . . , Ny and k = 1, . . . , Nz. The next lower band diagonal which is shifted in one
column from the first column is given by

d−1(p) =

[
− 1

dx2
εx
i− 1

2
,j,k

]
. (4.25)

The second lower band diagonal which is shifted Nx columns from the first column

d−2(p) =

[
− 1

dy2
εy
i,j− 1

2
,k

]
. (4.26)

The third lower band diagonal which is shifted Nx×Ny columns from the first column

d−3(p) =

[
− 1

dz2
εz
i,j,k− 1

2

]
. (4.27)

The remaining elements of the sparse lower triangular matrix A are set to zero. The
upper triangular diagonal elements are obtained by symmetry.

The second matrix, A2, is diagonal, and is generated from the Boltzmann distribution
term. The resultant nonlinear system of equations in matrix form is given by

A1u
r + A2(ur) = f l + bc, (4.28)

where A2(ur) = κ̄2(x̄) sinh(ur(x̄)) is nonlinear, bc is the vector of boundary conditions,
and ur is the regularized potential to be computed.

Notice that the system (4.28) can also be solved using several other methods, for
example, the nonlinear relaxation methods [127], the nonlinear multigrid (MG) method
[115], and the nonlinear conjugate gradient (CG) method [109]. However, when the
aforementioned methods were attempted to solve the FDM version of the nonlinear
PBE, the following observations were made: the convergence of the relaxation methods
cannot be guaranteed, the MG method may diverge on certain applications, and due to
the substantial evaluations of the exponential function, the CG method is quite slow.
These drawbacks, are perhaps the impetus for the widespread popularity of the inexact
Newton methods besides its proven convergence capabilities [121].

However, in this thesis, we employ a more efficient iterative approach of solving
the RPBE in (4.16), in which the RPBE is first linearized and then dicretized. See
Section 5.6 for more details.

64



4.3. The RS tensor based regularization scheme for the PBE

4.3.3. Discussion of the computational scheme

The main computational tasks for the RS tensor based scheme for regularizing the PBE
are summarized in Algorithm 4.1.

Algorithm 4.1: RS tensor format for constructing the NRPBE, see also Algo-
rithms RSDD and LRPBE in [18].

Data: PQR1 file and computational domain Ω = [−b, b]3.
Result: Long-range potential, Pl in (3.35), the short-range potential Ps in

(3.37) and the regularized Dirac delta distribution f l in (4.12).
1 Extract the atomic positions, charges and radii from the PQR file.
2 Expunge the atoms with zero radii.
3 Sort the atoms with similar atomic radii.
4 Generate the canonical tensors via the sinc quadrature representation.
5 Compute separately via shifting and windowing transform, the long-and

short-range canonical vectors [81].
6 Reduce the rank of the long-range component by the RHOSVD.
7 Compute the regularized Dirac delta distribution from the long-range

component.
8 Convert both the Dirac delta distribution and the short-range canonical parts

to full tensors.
9 Substitute f l into the right-hand side of the NPBE (2.15) to obtain the NRPBE

(4.16) subject to the boundary condition in (2.36).
10 Discretize the RPBE (4.16) to obtain the following nonlinear system of

equations
A(ur) = f l + bc,

which can be solved by any nonlinear system solver.
11 Obtain the final NRPBE solution u by the sum

u = ur + us,

where us = PRs is the precomputed short-range component of the Newton
potential sum.

The RS splitting scheme allows to reduce the initial equation for the solution of the
system with modified right-hand side by using the new splitting via range-separated
representation of the discretized Dirac delta distribution. In this new approach the
problem is reduced to computation of the short-range part in the collective free space
electrostatic potential of the system and to the subsequent solution of the PBE equation
for the long-range part only by the simple modification of the right-hand side. The

1A PQR (or Position, charge (Q), and Radius) file is a protein data bank (PDB) file with the
temperature and occupancy columns replaced by columns containing the per-atom charge (Q)
and radius (R) using the pdb2pqr software. PQR files are used in several computational biology
packages, including APBS [8].
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advantage is that the PBE applies to the smooth part of the total potential and hence a
controllable FDM/FEM approximation error on moderate size 3D grids can be achieved.

4.4. Efficient computation of electrostatic energies and
forces for the PBE

4.4.1. Electrostatic solvation energy for the PBE

An important application of the PBE’s electrostatic potential is the electrostatic solva-
tion free energy, which is useful in biophysics and biomedicine [108, 140]. It is defined
as the free energy required to transfer a biomolecule from a uniform dielectric contin-
uum to an inhomogeneous medium, which is generally divided into nonpolar and polar
terms [41]. The polar contribution to the solvation free energy is given by

∆Gpolar
solv = Gsolv

elec −Gref
elec, (4.29)

where Gref
elec (reference energy) is the total biomolecular electrostatic free energy in the

reference or vacuum state (solute homogeneous dielectric medium) and Gsolv
elec (solvated

energy) is that in the solvated state (inhomogeneous dielectric medium, for instance, a
protein in aqueous medium) [41, 140]. The electrostatic energy by definition, represents
the work required to assemble the biomolecule, and is given by

Gelec =
1

2

Nm∑
i=1

qiu(x̄i), (4.30)

where u(x̄i) is the mean electrostatic potential acting on the atom located at x̄i with
charge qi [140].

The APBS software package, for example, has an option which implements the multi-
grid or multilevel finite difference calculations using PMG 2 [8, 30], solve the PBE twice
for the components of the solvation free energy in (4.29). This is computationally de-
manding, especially if the biomolecule under investigation is very large, such that the
computational domain is chosen large enough in order to accurately approximate the
boundary conditions, leading to high degrees of freedom O(106) in the discretized PBE
[67, 108]. Notice that by the RS tensor format, we solve only for the solvated energy
(Gsolv

elec ) component numerically using the linearized variant of RPBE in (4.16) while
the reference energy (Gref

elec) is determined directly from the precomputed long-range
component of the free space electrostatic potential Pl in (3.35).

However, since the emergence of [30], options to calculate the regularized linear and
nonlinear PBE as in (2.48) using the finite element toolkit (FEtk), have also been
incorporated in the APBS, which yields the solvation energy without the need for
reference calculations. This is a positive step in the history of APBS, although, as
we observed earlier, the regularization scheme in (2.48) suffers from the inability to
efficiently separate the long- and short-range components.

2PMG is a Parallel algebraic MultiGrid code for general semilinear elliptic equations[147].
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A striking feature of the electrostatic energy of interaction is that it is entirely driven
by the long-range electrostatic potential. This is because the short-range components
do not communicate with their neighbours due to their localization (effective local
support) in the atomic volumes. To justify this claim, we prove in Lemma 4.4, that
the solvation free energy calculation depends only on the long-range components of the
free-space potential and that in the solvated state.

Lemma 4.4:

Let the total free-space (reference) electrostatic potential in (4.9) be given by the sum
utot

ref (x̄) = usref(x̄)+urref(x̄) and that of the solvated state of the PBE decomposition in
(4.16) by utot

solv(x̄) = usref(x̄) + ursolv(x̄), x̄ ∈ R3, using the RS tensor splitting scheme.
Then the solvation free energy in (4.29) is given by the regularized form:

∆Gr
solv =

1

2

Nm∑
i=1

qiu
r
solv(x̄i)−

1

2

Nm∑
i=1

qiu
r
ref(x̄i). (4.31)

♦

Proof. We substitute the components of the total electrostatic potential calculations
for the reference and solvated states of the biomolecule

∆Gpolar
solv = Gsolv

elec −Gref
elec,

=
1

2

Nm∑
i=1

qiu
tot
solv(x̄i)−

1

2

Nm∑
i=1

qiu
tot
ref (x̄i),

=
1

2

Nm∑
i=1

qi(u
s
ref(x̄i) + ursolv(x̄i))−

1

2

Nm∑
i=1

qi(u
s
ref(x̄i) + urref(x̄i)),

=
1

2

Nm∑
i=1

qi (u
r
solv(x̄i)− urref(x̄i))

= ∆Gr
solv.



(4.32)

The result for the electrostatic potential energy in (4.30), which is based on the
effective support of the short-range part of the total potential, was presented in (Lemma
4.2 in [17]). Therefore, by applying the RS tensor format to the PBE, we can leverage
this property to greatly reduce the computational costs and errors, which are inherent
in the current software packages. Other electrostatic energies, such as the electrostatic
free energy, the folding free energy, and the binding free energy can be calculated in a
similar way [41]. We leave this for future work.
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4.4.2. Electrostatic forces for the PBE

Electrostatic forces on atoms are critical quantities for a range of biomolecular simu-
lations, for example, the molecular structure optimization and equilibrium molecular
dynamics [146]. Electrostatic or polar solvation forces, which are obtained by the deriva-
tive of the electrostatic energy with respect to the interatomic distance [55, 72], can also
be computed efficiently using the results in Lemma 4.4. The traditional computation
of these forces is given by

fi = −∂G(r)

∂ri
, (4.33)

where ri is the atomic position and G is the electrostatic energy in (4.30).
Since the electrostatic forces are long-ranged by nature [15, 18, 48], it suffices to

compute these forces from the resulting electrostatic solvation energies obtained in
(4.32). We claim this in the following result.

Lemma 4.5:

Let the regularized electrostatic solvation energy be derived as in (4.32) via the
long-range electrostatic potential component. Then, the corresponding regularized
electrostatic force of interaction f r can be computed from the derivative of the reg-
ularized solvation energy ∆Gr

solv. ♦

Proof. Substituting the regularized solvation energy ∆Gr
solv into (4.33), we obtain

the required regularized electrostatic forces of interaction, i.e.,

f ri = −∂(∆Gr(r))

∂ri
, (4.34)

which completes the proof.

4.5. Conclusions

In this chapter, we have applied the novel RS tensor format to the Poisson-Boltzmann
equation in order to efficiently construct a regularized PBE model, via the splitting of
the Dirac delta distribution and the substitution of the singular sources by a smooth
and regularized function. The regularized PBE model enables the efficient computation
of only the long-range electrostatic potential, thereby avoiding the numerical approx-
imation of the singular sources, which increases the accuracy. We also prove that the
electrostatic energy can be computed a lot more efficiently and accurately by using the
long-range potential. Electrostatic forces follow suit.
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5.1. Introduction

In this chapter, we first review the general model order reduction (MOR) techniques
in Section 5.2 in order to provide a better understanding of their applications and
relevance in various contexts. Then we discuss the reduced basis method (RBM) for
both the classical linearized PBE (LPBE) in Section 5.3 and the classical nonlinear
PBE (NPBE) in Section 5.6.2, and highlight some of the computational challenges
encountered therein and how to circumvent them. In Section 5.6.1 we apply the RBM
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Stanford Bunny, to demonstrate the
basic idea that very little information
is required to describe a model. The
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the full order model and the reduced
order model, respectively, (courtesy of
[130]).

Figure 5.1.: The big picture representation of MOR 5.1a, and its graphical illustration
(i.e., easy-to-understand) on the Stanford Bunny in 5.1b.

to the range-separated tensor-based regularized PBE (RPBE), which is more accurate
and computationally cheaper than the classical versions.

5.2. Model order reduction techniques in a nutshell

The significance of numerical simulations have tremendously increased in the scientific
and engineering disciplines. Real time numerical capabilities are essential in predict-
ing the behaviour of complex systems in most engineering realms [11]. Modeling of
these systems usually results in differential systems (ODEs or PDEs) of higher orders,
whose prediction and optimization requires a computationally expensive numerical ap-
proximation, due to the high number of degrees of freedom involved. Therefore, it is
vital to construct accurate and efficient low dimensional surrogate reduced order mod-
els (ROMs) for these systems in order to perform rapid design and optimization at a
fraction of the original computational costs [11]. The aforementioned process is what
is generally referred to as model order reduction (MOR).

Figure 5.1 demonstrates the general steps involved in MOR, whereby the discretized
systems of equations can be of the order of O(105)− O(109) degrees of freedom. Note
that the reduction can yield small ROMs of the order of O(10).

5.2.1. MOR techniques in different fields

MOR techniques have been developed in different fields since the 1960s. Here, we
highlight some of these fields and their respective MOR approaches [20, 130].

(1) Structural dynamics. This is the field where the earliest MOR techniques were
developed in the 1960s. In this field, the dynamic analysis of structures is of major
interest and the major objectives are the identification of eigenfrequencies or the
computation of frequency response functions [20].
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5.2. Model order reduction techniques in a nutshell

� Mode displacement methods are based on the free vibration modes of the
structure. These modes can be obtained via a time-harmonic representation
of the displacement of the unforced system.

� Mode acceleration method is a computational variant of the static correlation
method [20] whose objective is to take into account the contribution of the
omitted modes. It is also an improvement of the mode displacement method.

� Modal truncation augmentation method is an extension of the mode acceler-
ation approach whose aim is to utilize the static correlation as an additional
direction for the truncation expansion.

(2) Systems and control. MOR for the analysis of dynamical systems and the
design of feedback controllers have been of major interest since the 1980s. The
main techniques here include:

� Balanced truncation, whose main purpose is the approximation of input-
output behaviour of a system. Here, the idea is to keep those ’states’ in
the ROM that contribute significantly to transferring energy from input to
output.

� Optimal Hankel norm approximation provides a ROM best approximating the
original system in the Hankel semi-norm.

(3) Scientific computing (numerical mathematics). Numerically efficient MOR
techniques in this field have been developed since the 1990s. Some of the techniques
here include:

� Krylov subspace based methods, for example, rational interpolation or mo-
ment matching, whose main purpose is the approximation of the system trans-
fer function that accurately describes the input-output bahaviour in some
range of the frequency domain. Some of the applications of these techniques
are large electronic circuits involving large linear subnetworks of components
[20].

� Proper Orthogonal Decomposition (POD) is a data based reduction technique
in which time is considered as the varying parameter and the snapshots of
the field variable (or the state) are computed numerically at different times.
Singular value decomposition (SVD) is applied to the snapshot matrix in order
to retain only a few modes which correspond to the largest singular values.
The ROM is then obtained via a Galerkin projection onto the space spanned
by the retained vectors [141].

� The reduced basis method is a parametrized MOR (PMOR) technique that
provides rapid and reliable approximation of solutions to parametrized PDEs
(PPDEs) for parameter space exploration, for example, in design and opti-
mization, control, and parameter estimation.

MOR techniques are further divided into two major groups: the parametrized MOR
(PMOR) and the non-parametrized MOR. In Section 5.2.2, we briefly highlight the
popular PMOR techniques among which the reduced basis method (RBM), considered
in this thesis, falls under.

71



5. Reduced basis methods

5.2.2. Parametrized MOR techniques

Most engineering systems are always parametrized in order to enable variations in
material, shape, loading, and boundary conditions during their design and analysis.
Therefore, PMOR techniques aim at reflecting this parameter dependency in the ROM,
thereby enabling expeditious optimization, control, uncertainty quantification and de-
sign space exploration cycles via the parametric simulations in the reduced space
[10, 11, 14]. The following are the popular PMOR techniques in the general MOR
community.

� Reduced basis methods (RBM) [59, 119, 123, 128]

� Proper orthogonal decomposition (POD) [62, 93, 94, 95, 141]

� Multi-dimensional moment matching [13, 43, 45, 49]

� System interpolation [9, 152]

� Empirical cross Gramian [60, 73, 74, 153]

In this thesis, we focus on the RBM technique, and we now dive into the details of
the RBM in the following Section 5.3.

5.3. Reduced basis method for the classical LPBE

The Reduced basis method (RBM) is a projection-based parametrized model order
reduction (PMOR) technique. The main goal is to generate a parametric ROM which
accurately approximates the original full order model (FOM) of high dimension over
varying parameter values [14, 42, 128]. The RBM leverages an offline/online procedure
which ensures an accurate approximation of the high-fidelity solution in a rapid and
inexpensive manner and is widely applicable in real-time and many-query scenarios.
For a thorough review, see [128].

We consider a physical domain Ω ⊂ R3 with boundary ∂Ω, and a parameter domain
D ⊂ R. The LPBE (2.21) is discretized with the centered finite difference scheme
(2.35) on Ω and Dirichlet boundary conditions (2.16) obtained from (2.36) are applied.
The resultant discrete problem of the LPBE becomes, for any µ ∈ D, find uN(µ) ∈ RN

that satisfies the linear system

A(µ)uN(µ) = f(µ), µ ∈ D, (5.1)

where A(µ) ∈ RN×N and f(µ) ∈ RN. We also assume that the matrix A(µ) can be
written as a parameter-affine matrix,

A(µ) =

Q∑
i=1

Θi(µ)Ai, (5.2)

where Q ∈ N, Θi are scalar coefficient functions, and Ai are the parameter independent
matrices.
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5.3. Reduced basis method for the classical LPBE

The N × N system is indeed computationally expensive to be solved for an accu-
rate approximation of u(µ) because the dimension N is approximately 2× 106 for our
problem. Therefore, we apply the RBM to save computational costs by providing an
accurate approximation of uN(µ) at a greatly reduced dimension of N � N. The ROM
is given by (5.5).

However, as detailed in Section 5.3.2, we encounter some computational complexity
in the online phase of RBM which is caused by the nonaffine parameter dependence in
the right-hand side vector f(µ) from the boundary condition (2.36). The parameter,
the ionic strength, resides in the kappa term κ in the exponential function. This violates
one of the key assumptions of the RBM which requires that all the system matrices
and vectors must be affinely dependent on the parameter so that the offline/online
decomposition is natural [59]. To circumvent this problem, we propose to apply an
empirical interpolation method to reduce the complexity of the the online phase by
avoiding the high-dimensional computation related to the vector f(µ). We provide
some details in Section 5.4.

5.3.1. The solution manifold and the greedy algorithm

Another key assumption of RBM is the existence of a typically smooth and very low
dimensional solution manifold which almost covers all the high-fidelity solutions of (5.1)
under variation of parameters [42, 128],

MN = {uN(µ) : µ ∈ D}. (5.3)

The RB approximation space is then built upon this solution manifold and is given by
the subspace spanned by the snapshots of the FOM. In other words, it is the subspace
spanned by the high-fidelity uN(µ) solutions corresponding to a number of samples of
the parameters, that is,

range(V ) = span{uN(µ1), ..., uN(µl)}, ∀µ1, ..., µl ∈ D. (5.4)

The greedy algorithm as given in Algorithm 5.1 is used to generate the reduced basis
space (5.4) through an iterative procedure where a new basis is computed at each
iteration [57]. The RB space can be thought of as being nested or hierarchical such
that the previous basis set is a subset of the next and so on.
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Algorithm 5.1: Greedy algorithm for the classical LPBE [58]

Data: A training set Ξ ⊂ D including samples of µ covering the parameter
domain D, i.e., Ξ := {µ1, . . . , µl}.

Result: RB basis represented by the projection matrix V .
1 Choose µ∗ ∈ Ξ arbitrarily.
2 Solve FOM (5.1) for uN(µ∗).
3 V1 = [uN(µ∗)], N = 1
4 while max

µ∈Ξ
∆N(µ) ≥ ε do

5 µ∗ = arg max
µ∈Ξ

∆N(µ).

6 Solve FOM (5.1) for uN(µ∗).
7 VN+1 = [VN uN(µ∗)].
8 Orthonormalize the columns of VN+1.
9 N = N + 1.

10 Update ∆N(µ).

The RB approximation is then formulated as, for any given µ ∈ D, find uN(µ) ∈ XN

which satisfies

AN(µ)uN(µ) = fN(µ), (5.5)

where AN = V TAV and fN(µ) = V Tf(µ). V is the orthonormal matrix computed
from the greedy algorithm. From the fact that N � N, solving the small dimensional
reduced order model (ROM) is much cheaper than solving the high-fidelity model, the
FOM (5.1) [42]. However, one problem still remains when computing the ROM. The
computational complexity of evaluating the nonaffine function fN(µ) still depends on
the dimension of the FOM, as illustrated in Section 5.3.2. Efficient implementation of
Algorithm 5.1 depends on an efficient error estimation ∆N(µ) of the ROM, which is
discussed in Section 5.5.

5.3.2. Computational complexity of the reduced order model
(ROM)

To demystify the issue of computational complexity in the ROM, we can first rewrite
(5.1) explicitly to illustrate the affine parameter decomposition on the left-hand side
and the nonaffine right-hand side,

(A1 + µA2)uN = ρ+ b(µ), µ ∈ D, (5.6)

where the matrix A1 comes from the Laplacian operator term, A2 is a diagonal matrix
from the kappa term, ρ represents the charge density term and b(µ), the boundary
conditions obtained from the analytical solution in (2.36). We can clearly notice the
affine parameter decomposition of the matrix A in (5.1) into A1 and µA2 in (5.6).
However, the right-hand side function b(µ) is nonaffine in the parameter and therefore
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it cannot be decomposed in such a manner. Consider the ROM which is obtained by
the greedy algorithm approach in Algorithm 5.1 and a Galerkin projection,

( Â1︸︷︷︸
N×N

+µ Â2︸︷︷︸
N×N

) uN︸︷︷︸
N×1

= ρ̂︸︷︷︸
N×1

+ V T︸︷︷︸
N×N

b(µ)︸︷︷︸
N×1

, (5.7)

where Â1 = V TA1V , Â2 = V TA2V , ρ̂ = V Tρ, and N � N.
It is clear from (5.7) that the last term of the right-hand side (RHS) still depends

on the dimension N of the FOM while all the other matrices and vectors depend only
on the dimension N of the ROM, with N � N. Therefore, the reduced order matri-
ces on the left-hand side and the first vector on the right-hand side of (5.7) can be
precomputed and stored during the offline phase, thereby providing a lot of compu-
tational savings. However, the term V T b(µ) cannot be precomputed because of the
aforementioned nonaffine parameter dependence and therefore, the Galerkin projection
involving matrix-vector products which are dependent on the dimension N, has to be
computed in the online phase of solving the ROM.

In principle, we require O(2NN) flops for these matrix-vector products and a full
evaluation of the nonaffine analytical function (2.36) to obtain V T b(µ). This can be
computationally expensive for a large N, especially during the a posteriori error estima-
tion (computing ∆N(µ)), where the residual is computed l times for varying parameter
values µi, i = 1, . . . , l for a single iteration of the greedy algorithm. The discrete
empirical interpolation method (DEIM) is an approach to circumvent this problem in
order to reduce the computational complexity of the nonaffine function. We discuss
this technique at length in Section 5.4.

5.4. Discrete empirical interpolation method (DEIM)

DEIM is a complexity reduction technique that was proposed in [29] to overcome the
drawback of the proper orthogonal decomposition (POD) approach for approximating
a nonaffine (or nonlinear) parametrized function in the ROM during the online phase.
The main idea of DEIM is to interpolate the nonlinear/nonaffine function by computing
only a few entries of it, which dramatically reduces the computational complexity [29,
148].

We provide a brief overview on using the singular value decomposition (SVD) to
obtain the interpolation basis vectors. Firstly, we compute snapshots of the function
b(µ) at a set of parameters µ in the training set Ξ = {µ1, . . . , µl} ⊂ D and construct
the snapshot matrix,

F = [b(µ1), . . . , b(µl)] ∈ RN×l. (5.8)

Secondly, we compute its singular value decomposition (SVD),

F = UFΣW T , (5.9)

where UF ∈ RN×l, Σ ∈ Rl×l, and W ∈ Rl×l. Note that the matrices UF and W are
orthogonal, that is, (UF )TUF = W TW = Il, Il ∈ Rl×l and Σ = diag(σ1, . . . , σl), with
σ1 ≥ . . . ≥ σl ≥ 0.
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Figure 5.2.: Decay of singular values of Σ in (5.9).

Figure 5.2 shows the decay of the singular values of Σ for the protein fasciculin 1.
Figure 5.2a shows the behaviour of 20 singular values with almost no decay from the
11th singular value. We discard these non-decaying singular values to obtain those in
Figure 5.2b. From the latter, we can actually truncate the singular values by selecting
only the r largest ones that correspond to some required degree of accuracy. In this
case, l = 11 and r = 9 which corresponds to an accuracy of εsvd = O(10−10) in (5.11).
The number r plays an important role in selecting the basis set {uFi }ri=1 of rank r from
UF which solves the minimization problem [141],

arg min
{ũi}ri=1

l∑
j=1

‖Fj −
r∑
i=1

〈Fj, ũi〉ũi‖2
2, s.t. 〈ũi, ũj〉 = δij, (5.10)

where Fj is the jth column of the snapshot matrix F , and δij is the usual Kronecker
delta.

The following criterion is used to truncate the largest singular values from Figure 5.2
based on some desired accuracy, εsvd.

l∑
i=r+1

σi

l∑
1=1

σi

< εsvd, (5.11)

where σi, i = 1, . . . , l, are the nonzero singular values of F . The dotted horizontal black
line corresponds to r = 9 singular values at εsvd = 10−10 and the corresponding singular
vectors {uFi }ri=1 are used in the DEIM approximation.

DEIM overcomes the problem mentioned in Section 5.3.2 by determining an interpo-
lation of the nonaffine function b(µ). This is realized by approximating b(µ) with the
linear combination of the basis vectors UF = [uF1 , . . . , u

F
r ] ∈ RN×r, i.e.

b(µ) ≈ UF c(µ), (5.12)
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5.4. Discrete empirical interpolation method (DEIM)

where c(µ) ∈ Rr is the corresponding coefficient vector, and can be determined by
assuming that UF c(µ) interpolates b(µ) at r selected interpolation points, then,

P T b(µ) = P TUF c(µ), (5.13)

where P is an index matrix given by

P = [e℘1 , . . . , e℘r ] ∈ RN×r, (5.14)

which consists of unit vectors e℘i , i = 1, . . . , r, where the indices ℘i, are the DEIM
interpolation points which are selected iteratively with a greedy algorithm. Suppose
that P TUF ∈ Rr×r is nondegenerate, then c(µ) can be determined from (5.13) by

c(µ) = (P TUF )−1P T b(µ). (5.15)

Therefore, the function b(µ) in (14) can be approximated as

b(µ) ≈ UF c(µ) = UF (P TUF )−1P T b(µ), (5.16)

so that the ROM in (5.7) with DEIM approximation becomes,

( Â1︸︷︷︸
N×N

+µ Â2︸︷︷︸
N×N

)uN(µ)︸ ︷︷ ︸
N×1

= ρ̂︸︷︷︸
N×1

+V TUF (P TUF )−1︸ ︷︷ ︸
N×r

P T b(µ)︸ ︷︷ ︸
r×1

. (5.17)

The interpolant V TUF (P TUF )−1P T b(µ) can be computed a lot cheaper than V T b(µ)
because we can precompute V TUF (P TUF )−1 independent of the parameter µ. Alter-
natively, we can also compute only those entries in b(µ) that correspond to the inter-
polation indices ℘i, i = 1, . . . , r, r � N, i.e., P T b(µ) instead of the entire N entries in
b(µ).

For the actual numerical implementation of the interpolation (5.16), the matrix P
needs not be explicitly applied. Instead, only the interpolation indices ℘i, i = 1, . . . , r,
need to be applied to the matrix UF or the nonaffine function b(µ). This implies that
P TUF merely consists of the rows of UF which correspond to the interpolation indices
℘i, i = 1, . . . , r. Similarly, P T b(µ) is a condensed vector composed of a few entries of
b(µ) which correspond to the same indices. Algorithm 5.2 provides a brief overview of
the DEIM procedure.
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Algorithm 5.2: DEIM algorithm [29, 46]

Data: POD basis {uFi }ri=1 for F in (5.9).
Result: DEIM basis UF and indices ~℘ = [℘1, . . . , ℘r]

T ∈ Rr.
1 ℘1 = arg max

j∈{1,...,N}
|uF1j|, where uF1 = (uF11, . . . , u

F
1N)T .

2 UF = [uF1 ], P = [e℘1 ], ~℘ = [℘1].
3 for i = 2 to r do
4 Solve (P TUF )α = P TuFi for α, where α = (α1, . . . , αi−1)T .
5 ri = uFi − UFα.
6 ℘i = arg max

j∈{1,...,N}
|rij|, where ri = (ri1, . . . , riN)T .

7 UF ← [UF uFi ], P ← [P e℘i ], ~℘←
[
~℘

℘i

]
.

Note that in Algorithm 5.2, the POD basis {uFi }ri=1 is of great significance as an input
basis for the DEIM procedure in two ways. First, a set of interpolation indices ℘i are
constructed inductively based on this basis through a greedy algorithm. Secondly, an
error analysis in [29] indicates that the ordering of this basis according to the dominant
singular values makes it the right choice for this algorithm. In step 1, the process
selects the first interpolation index ℘1 which corresponds to the location of the entry
in uF1 with the largest magnitude. The subsequent indices in step 6, ℘i, i = 2, . . . , r,
are selected in such a way that each of them corresponds to the location of the entry
in r (step 5) with the largest magnitude.

5.4.1. DEIM approximation error

We compute the error due to the DEIM interpolation which is to be included into the
residual in the a posteriori error estimation. This error was first proposed in [148] for
nonlinear dynamical systems and has also been used in [46] in the context of a nonlinear
population balance systems. We extend this idea to parametrized elliptic PDEs where
the DEIM error is given by,

eDEIM = b(µ)− b̃(µ) = Π2(I − Π)b(µ), (5.18)

where Π and Π2 are oblique projectors defined as follows,

Π = UF (P TUF )−1P T , (5.19)

and
Π2 = (I − Π)ŨF (P̃ T (I − Π)ŨF )−1P̃ T . (5.20)

In equation (5.19), UF = (uF1 , . . . , u
F
r ) ∈ RN×r and P ∈ RN×r are the current DEIM

basis and interpolation index matrix obtained from Algorithm 5.2.
To obtain Π2 in (5.20), we assume that r∗(≥ r) DEIM basis vectors U∗F = (uF1 , . . . , u

F
r∗)

interpolate b(µ) exactly, i.e.

b(µ) = U∗F ((P ∗)TU∗F )−1(P ∗)T b(µ), (5.21)
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where P ∗ is the corresponding index matrix with r∗ columns. Finally, ŨF = U∗F (:
, r + 1 : r∗) and P̃ = P ∗(:, r + 1 : r∗) such that U∗F = [UF , ŨF ] and P ∗ = [P, P̃ ], where
M(:, r+ 1 : r∗), using MATLAB notation [46]. In the next subsection, we introduce an
a posteriori error estimation derived from the residual of the approximate RB solution
and the DEIM approximation error.

5.5. A Posteriori error estimation

A posteriori error estimators are computable indicators which provide an estimate to
the actual solution error. An efficient error estimator is required to possess three major
characteristics, namely: it is required to be as sharp as possible (close to the unknown
actual error), asymptotically correct (tend to zero with increasing RB space dimension
N , at a similar rate as the actual error), and computationally cheap (because it is
computed in the online phase). Therefore, these estimators guarantee both reliability
and efficiency of the reduction process [123].

In Section 5.5.1 and Section 5.5.2, we briefly introduce the concepts of error esti-
mators which are related to the solution vector (i.e., electrostatic potential) and the
output (electrostatic energy), respectively.

5.5.1. Error estimator for the solution vector

We first compute the residual after introducing DEIM interpolation;

rDEIM
N (uN ;µ) = (ρ+ b̃(µ))− AN(µ)uN(µ), (5.22)

where b̃(µ) = Πb(µ) is the DEIM interpolation of b(µ) and uN(µ) := V uN(µ) is the
RB solution transformed back to the high-fidelity space N. Then the final residual is
obtained by including the DEIM approximation error derived in Section 5.4.1 as follows;

rN(uN ;µ) = (ρ+ b(µ))− AN(µ)uN(µ)

= (ρ+ b̃(µ))− AN(µ)uN(µ) + b(µ)− b̃(µ)

= rDEIM
N (uN ;µ) + b(µ)− b̃(µ)︸ ︷︷ ︸

:=eDEIM

= rDEIM
N (uN ;µ) + eDEIM.

(5.23)

The a posteriori error estimation is then derived from the residual in (5.23). Rewrit-
ing the first equation of (5.23), we obtain

rN(uN ;µ) = AN(µ)uN(µ)− AN(µ)uN(µ)

= AN(µ)e(µ),
(5.24)

where the error of the solution vector e(µ) := uN(µ)− uN(µ) is given by

e(µ) = (AN(µ))−1rN(uN ;µ). (5.25)
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We obtain an upper bound for the 2-norm of the error by taking the 2-norm on both
sides of equation (5.25), i.e.

‖e(µ)‖2 ≤ ‖(AN)−1(µ)‖2‖rN(uN ;µ)‖2 =
‖rN(uN ;µ)‖2

σmin(AN(µ))

=: ∆̃N(µ),

(5.26)

where σmin(AN(µ)) is the smallest eigenvalue of the symmetric matrix AN(µ) [123]. The
quantity ∆̃N(µ) is a rigorous error bound, and can be used to select snapshots within
the greedy algorithm in the offline stage and consequently to measure the accuracy of
the RB approximation [57]. For efficient computation of the norm of the residual and
error bounds, see [59, 123].

It is computationally expensive to compute σmin(AN(µ)) in the online phase as it
entails solutions of large-scale eigenvalue problems [57]. Nevertheless, in our compu-
tations, we use the norm of the residual as our error estimator because the coefficient
matrix A of the PBE system Au = b has small eigenvalues of the order of O(10−2),
which impede the construction of tight error bounds. This error estimation provides
an estimation of the true error that works well for our problem. It also provides rapid
convergence as depicted in the numerical results in Figure 6.2. It is given by

‖e(µ)‖2 ≈ ‖rN(uN ;µ)‖2 := ∆N(µ). (5.27)

5.5.2. Output error estimator

When the output becomes interesting, one can also use the output error bounds (or
estimators) to measure the output error. For the PBE model, the output of interest
is given by s(µ) = u(µ)Tf(µ), which represents the electrostatic free energy of the
system. We here briefly describe the output error estimator for a compliant problem,
in which the output functional is equivalent to the load/source functional, see [59] for
more details. Additionally, the coeffient matrix of the system should be symmetric for
any parameter µ ∈ D. These properties are fulfilled by the PBE system. According to
the derivation in [59], the output error bound is given by

‖s(µ)− sN(µ)‖2 ≤ ∆′s(µ) :=
‖rN(uN ;µ)‖2

2

σmin(AN(µ))
, (5.28)

where sN(µ) = uN(µ)TfN(µ) is the output computed from the ROM, and u(µ) and
uN(µ) are the solutions of the FOM in (5.1) and ROM in (5.5), respectively. We here
also avoid the use of σmin(AN(µ)) due to the small eigenvalues of the coefficient matrix
A.

5.6. Numerical approach to solving the NRPBE

Let us consider a physical domain Ω ⊂ R3 with boundary ∂Ω, and a parameter domain
D ⊂ R which represents the variation in ionic strength I = 1/2

∑Nions
j=1 cjz

2
j , which

is a function of the ionic concentration ci, of the salt solution. It resides in κ̄2 =

80



5.6. Numerical approach to solving the NRPBE

8πe2I/1000εκBT . One standard way of solving the NRPBE in (4.16) is that it is first
discretized in space to obtain a nonlinear system in matrix-vector form

A(urN(µ)) = br(µ), µ ∈ D, (5.29)

where A(urN(µ)) ∈ RN×N, br(µ) ∈ RN, µ = I ∈ D, and urN(µ) is the discretized solution
vector. Here, N is of order O(106).

Then system (5.29) can be solved using several existing techniques. For example,
the nonlinear relaxation method has been implemented in the Delphi software [127],
the nonlinear conjugate gradient (CG) method has been implemented in University of
Houston Brownian Dynamics (UHBD) software [109], the nonlinear multigrid (MG)
method [115] and the inexact Newton method have been implemented in the adaptive
Poisson-Boltzmann solver (APBS) software [65].

In this study, we apply a different approach of solving (4.16) [77, 110, 133]. In par-
ticular, an iterative approach is first applied to the continuous NRPBE in (4.16), where
at the (n + 1)th iteration step, the NRPBE is approximated by a linear equation via
the Taylor series truncation. The expansion point of the Taylor series is the continuous
solution (ur(µ))n at the nth iteration step.

Consider (ur(µ))n as the approximate solution at the nth iterative step, then the
nonlinear term sinh((ur(µ))n+1) at the (n+ 1)th step is approximated by its truncated
Taylor series expansion as follows

sinh((ur(µ))n+1) ≈ sinh((ur(µ))n) + ((ur(µ))n+1 − (ur(µ))n) cosh((ur(µ))n). (5.30)

Substituting the approximation (5.30) into (4.16), we obtain

−∇ · (ε(x̄)∇(ur(µ))n+1) + κ̄2(x̄) cosh((ur(µ))n)(ur(µ))n+1 = −κ̄2(x̄) sinh((ur(µ))n)

+ κ̄2(x̄) cosh((ur(µ))n)(ur(µ))n + br(µ). (5.31)

The equation in (5.31) is linear, and can then be numerically solved by first applying
spatial discretization. In this regard, we first define

cosh�(urN(µ))n =: w =


w1

w2

...

wN

 , (5.32)

where � is the elementwise operation on a vector.
Then, we construct the corresponding diagonal matrix from (5.32) of the form

B = diag(w1, w2, . . . , wN).

Finally, we obtain the following linear system for the (n+1)st iteration

A1(urN(µ))n+1 +µA2B(urN(µ))n+1 = −µA2 sinh�(urN(µ))n+µA2B(urN(µ))n+ br1 + b2(µ),
(5.33)
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where A1 is the Laplacian matrix and A2 is a diagonal matrix containing the net κ̄2

function (i.e., κ̄2/µ). Note that the diagonal matrix B changes at each iteration step,
therefore, it cannot be precomputed. The vectors br1 and b2(µ) are the regularized ap-
proximation of the Dirac delta distributions and the nonaffine (in parameter) Dirichlet
boundary conditions, respectively.

Let
A(·) = A1 + µA2B (5.34)

and
F : right− hand side of (5.33), (5.35)

we obtain
A((urN(µ))n)(urN(µ))n+1 = F ((urN(µ))n), n = 0, 1, . . . . (5.36)

Then, at each iteration, system (5.36) is a linear system w.r.t. (urN)n+1, which can be
solved by any linear system solver of choice. In this study, we employ the aggregation-
based algebraic multigrid method (AGMG) 1 [113]. Algorithm 5.3 summarizes the
detailed iterative approach of solving (5.36). This approach of first linearization, then
discretization is shown to be more efficient than the standard way of first discretization
and then linearization, via, for example, the Newton iteration. The advantage of the
proposed approach is that it avoids computing the Jacobian of a huge matrix. It is
observed that it converges faster than the standard Newton approach.

Algorithm 5.3: Iterative solver for the NRPBE

Data: Initialize the potential (urN(µ))0, e.g., (urN(µ))0 = 0 and the tolerance
δ0 = 1.

Result: The converged NRPBE solution (urN(µ))n at δn ≤ 10−8.
1 while δn ≥ 10−8 do
2 Solve the linear system (5.36) for (urN(µ))n+1 using AGMG.
3 δn+1 ← ‖(urN(µ))n+1 − (urN(µ))n‖2.
4 (urN(µ))n ← (urN(µ))n+1.

5.6.1. The reduced basis method for the NRPBE

It is prohibitively expensive to solve the N × N system in (5.36) for an accurate ap-
proximation of urN(µ) because the dimension N ranges between O(106) and O(108) for
typical biomolecules of interest.

The greedy procedure for hierarchically constructing the reduced basis space is sum-
marized in Algorithm 5.4. The residual in Algorithm 5.4 is derived from (5.36) and the
ROM solution (ûrN(µ))n = VN(urN(µ))n lifted into the high-fidelity space of dimension
N, i.e.,

rN((ûrN(µ))n+1) = F ((ûrN(µ))n)− A((ûr(µ))n)(ûrN(µ))n+1. (5.37)

1AGMG implements an aggregation-based algebraic multigrid method, which solves algebraic sys-
tems of linear equations, and is expected to be efficient for large systems arising from the dis-
cretization of scalar second order elliptic PDEs [113].
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Algorithm 5.4: Greedy algorithm for the NRPBE [58]

Data: Training set Ξ := {µ1, . . . , µl} ⊂ D, tolerance ε0 = 1, and potential
(urN(µ))0.

Result: RB basis represented by V and the ROM in (5.38).
1 Choose µ∗ ∈ Ξ arbitrarily.
2 Solve (4.16) for urN(µ∗) using Algorithm 5.3.
3 V1 = [urN(µ∗)], N = 1.
4 Orthonormalize V1.
5 while max

µ∈Ξ
∆N(µ) ≥ ε do

6 Compute urN(µ) from (5.38) using Algorithm 5.5, and calculate
∆N(µ) = ‖rN(ûrN(µ))‖2 in (5.37), ∀µ ∈ Ξ,

7 µ∗ = arg max
µ∈Ξ

∆N(µ),

8 Solve (4.16) for urN(µ∗),
9 VN+1 ← [VN urN(µ∗)].

10 Orthonormalize the columns of VN+1.
11 N ← N + 1.

The ROM for the system (5.36), is therefore, formulated as follows. Given any µ ∈ D,
and an initial guess (urN(µ))0 ∈ RN , the RB approximation (urN(µ))n+1, at the future
iteration step n+ 1 satisfies the equation

AN((urN(µ))n)(urN(µ))n+1 = FN((urN(µ))n), n = 0, 1, . . . , (5.38)

where (urN(µ))0 is the zero initial guess in this study and AN and FN are defined
explicitly as

AN := Â1(urN(µ))n+1 + µÂ2B̃VN(urN(µ))n+1,

and
FN := −µÂ2 sinh�(ûrN(µ))n + µÂ2B̃VN(urN(µ))n + brN + V T

N b2(µ),

where B̃ = diag(w̃1, w̃2, . . . , w̃N) and

cosh�(ûrN(µ))n =: w̃ =


w̃1

w̃2

...

w̃N

 , where (ûrN(µ))n = VN(urN(µ))n. (5.39)

The resulting ROM is given by

Â1(urN(µ))n+1 + µÂ2B̃VN(urN(µ))n+1 = −µÂ2 sinh�(ûrN(µ))n

+ µÂ2B̃VN(urN(µ))n + brN + V T
N b2(µ), (5.40)

where (urN(µ))n+1 is the unknown solution to the ROM and � is the elementwise op-
eration on a vector.
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The reduced matrices Â1 := V T
NA1VN and Â2 := V T

NA2 and the reduced vector
brN = V T

N b
r
1 (see (5.33)) are determined via projection with the RB basis VN and can be

precomputed in the offline phase of the greedy algorithm. However, the matrix B̃ and
vector b2(µ) are updated and or changed at each iteration and for varying parameter
values, respectively, hence, they cannot be precomputed. This leads to a partial offline-
online decomposition scenario, whereby Galerkin projections to some terms have to be
computed in the online phase.

Note that V T
N b2(µ) in (5.40) is computed by first evaluating a long vector b2(µ), then

projecting it onto the low dimensional space N using VN . This is time consuming when
b2(µ) needs to be evaluated many times for many values of µ. In Section 5.6.1.1, we
propose to apply DEIM technique to further reduce the computational complexity of
V T
N b

r
2(µ). Details can be found in [16], where DEIM was applied to a similar PBE

problem.

5.6.1.1. Computational complexity of the regularized ROM

It is well known that another key assumption of the RBM, besides the low dimen-
sionality of the solution manifold, is the parameter affine property, which ensures the
efficiency of the offline-online decomposition by eliminating the dependency of the ROM
on the dimension N of the truth high-fidelity FOM [59]. However, note that on the one
hand, (5.33) is actually parameter nonaffine with respect to the Yukawa-type bound-
ary conditions, represented by F in (5.35). On the other hand, the matrix A2 requires
updates at each iteration, hence Galerkin projections are unavoidable in the online
phase.

Therefore, we apply DEIM to the parametric nonaffine boundary conditions, the
term b2(µ) as discussed in Section 5.4 to obtain the following approximation

b2(µ) ≈ UF c(µ) = UF (P TUF )−1P T b2(µ). (5.41)

The ROM in (5.40) with DEIM approximation becomes

Â1(urN(µ))n+1 + µÂ2B̃VN(urN(µ))n+1 = −µÂ2 sinh�(ûrN(µ))n + µÂ2B̃VN(urN(µ))n

+ brN(µ) + V T
N UF (P TUF )−1P T b2(µ). (5.42)

Note that at each iteration, only a small ROM in (5.42) is solved. With its small size
N � N, the system (5.42) can be solved using a direct solver rather than the iterative
solver (AGMG), which is applied to to the FOM in (5.31). The iterative approach of
obtaining an approximate solution VN(urN(µ))n+1 to (5.29) using the ROM (5.42) is
summarized in Algorithm 5.5.
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Algorithm 5.5: Iterative solver for the regularized ROM in (5.42)

Data: Initialize the potential (urN(µ))0, e.g., (urN(µ))0 = 0 and the tolerance
δ0 = 1.

Result: The converged ROM solution (urN(µ))n at δn ≤ 10−8.

1 Precompute Â1, brN in (5.42) and UF and ~℘ in Algorithm 5.2.
2 while δn ≥ 10−8 do
3 Assemble the ROM in (5.42) using the precomputed quantities in Step 1.
4 Solve the regularized ROM (5.42) for (urN(µ))n+1.
5 δn+1 ← ‖(urN(µ))n+1 − (urN(µ))n‖2.
6 (urN(µ))n ← (urN(µ))n+1.

Remark 5.1:

The total electrostatic potential is obtained by lifting the reduced order long-range
surrogate solution into the high-fidelity space N and adding to the parameter inde-
pendent analytically precomputed short-range component Ps in (3.37), i.e.,

u(µ) = Ps + ûrN(µ), (5.43)

where ûrN(µ) = VNu
r
N(µ). ♦

5.6.2. The reduced basis method for the classical NPBE

In this section, we apply RBM to the classical nonlinear PBE (NPBE), and highlight
the associated computational shortcomings as compared with RBM being applied to
the NRPBE. We begin by considering the FOM of the classical NPBE in (2.15) after
discretization in space, i.e.,

A(uN(µ)) = f(µ), µ ∈ D, (5.44)

where f(µ) includes both the singular sources from the right-hand side of (2.15) and
the parameter non-affine Dirichlet boundary conditions from (2.36). The corresponding
classical ROM is defined as

Â(uN(µ)) = f̂(µ), (5.45)

where Â(uN(µ)) = V T
NA(VNuN(µ)) and f̂ = V T

N f . Here, VN can be constructed using
the greedy algorithm in Algorithm 5.4 by replacing the snapshots in Step 3 and Step 9
with the solutions to (5.44).

Note that the FOM of the classical NPBE is solved iteratively in a similar way like
the NRPBE using Algorithm 5.3. The corresponding iterative form of (5.44) is given
by

A1(uN(µ))n+1 +µA2B2(uN(µ))n+1 = −µA2 sinh�(uN(µ))n+µA2B2(uN(µ))n+f(µ),
(5.46)
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where all the quantities except B2, f and the solution (uN(µ))n+1 are equivalent to
those in the NRPBE (5.33). Here B2 is defined as

B2 = diag(v1, v2, . . . , vN),

and is constructed from

cosh�(uN(µ))n =: v =


v1

v2

...

vN

 . (5.47)

The ROM of (5.46) is straightforward, i.e., given any µ ∈ D, and an initial potential
distribution (uN(µ))0, the RB approximation (uN(µ))n+1, at the subsequent iteration
steps n+ 1 satisfies

Â1(uN(µ))n+1 + µÂ2B̃2VN(uN(µ))n+1 = −µÂ2 sinh�(ûN(µ))n

+ µÂ2B̃2VN(uN(µ))n + f̂(µ), (5.48)

where (ûN(µ))n = VN(uN(µ))n and B̃2 = diag(ṽ1, ṽ2, . . . , ṽN) is constructed from

cosh�(ûN(µ))n =: ṽ =


ṽ1

ṽ2

...

ṽN

 . (5.49)

The process of iteratively solving (5.48) is similar to that of (5.38), which is provided
in Algorithm 5.5.

5.7. Summary of the RBM workflow

In this ssection, we provide a succint summary of the RBM workflow for parametrized
linear PDEs in Algorithm 5.3. Note that in this workflow, we assume an affine in
parameter (or solution) system. Otherwise, one needs to emply the DEIM or EIM
techniques for complexity reduction in the online phase as well as for the versatility of
the ROM in the parameter domain.
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Parametrized PDE

High-fidelity discretization

A(µ)uN(µ) = fN(µ), N ≈ O(106)

A(µ) =
∑Qa
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fN(µ) =
∑Qf

q=1
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f (µ)f qN

Offline-offline phase

Snapshot generation

Generate snapshots {uN(µj)}j by POD
or greedy algorithms.
Construct projection matricesV&W.

Projection

Âq
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f̂ qN = VT f qN, N � N

Parameter, µ ∈ Ξ

Assemble the RB system

ÂN(µ) =
∑Qa

q=1
Θq
a(µ)Âq

N

f̂N(µ) =
∑Qf

q=1
Θq
f (µ)̂f qN

Offline-online phase

Solve the RB system

Â(µ)uN(µ) = f̂N(µ), N � N

Estimate the error

‖uN(µ)− VuN(µ)‖

Outputs and post-processing

Evaluate outputs of interest

Figure 5.3.: A summary of the RBM workflow.

5.8. Conclusions

In this chapter, we have first briefly studied the general model order reduction tech-
niques. Thereafter, we discussed the reduced basis method and applied it to the classical
linearized PBE. The various computational challenges were analyzed and techniques to
circumvent them were discussed. Then the nonlinear regularized PBE was considered
and the RBM was applied in order to construct a surrogate regularized ROM (RROM).
Last but not least, the nonlinear classical PBE was also briefly considered in order to
facilitate the comparison with and to demonstrate the efficiency and efficacy of the
regularized variant in Chapter 6.
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6. Numerical examples

6.1. Introduction

In this chapter, we first present the numerical results for the classical linearized Poisson-
Boltzmann equation (LPBE), which encompasses the various FDM tests using different
biomolecules in Section 6.2. The reduced basis approximations for these results are
presented in Section 6.3. Then we present the numerical tests for the range-separated
(RS) tensor-based regularized PBE in Section 6.4, wherein the accuracies of both the
free space potential modeled by the regularized Poisson equation (RPE), and the elec-
trostatic potential of solvated biomolecules in a medium of inhomogeneous (jumping)
dielectric coefficients modeled by the RPBE, are shown. The reduced basis results
for the regularized nonlinear RPBE are discussed in Section 6.5 and its accuracy and
efficacy over the classical NPBE is demonstrated therein.

6.2. Numerical results for the classical LPBE

6.2.1. Finite difference results

We consider the LPBE (2.21), a parameter domain D = [0.05, 0.15], and a cubic grid
of 129 points and a box length of 60 Å centered at the protein position. The parameter
domain is chosen for a feasible physiological process and µ resides in the second term
in the kappa function. Information about the molecular charge density is obtained
from a PQR 1 file which contains 1228 atoms of the protein fasciculin 1 toxin CPDB
entry 1FAS. We discretize the LPBE with a centered finite difference scheme and the
resulting parametrized linear system (5.29) has more than 2× 106 degrees of freedom.
This FOM is solved by the aggregation-based algebraic multigrid (AGMG) method,
where a tolerance of 10−10 and a zero initial guess are used [113, 114].

It is worth to note that in the absence of ions (that is, at µ = I = 0), the resultant
free space electrostatic potential experiences a slow polynomial decay in 1/‖x̄‖. This
is attributed to the large force constant (332 kcal/mol) of the long-ranged electrostatic
interactions. However, in the presence of ions (that is, µ > 0), they are damped or
screened, thereby experiencing an exponential decay [48]. The computational time
taken to obtain the high-fidelity solution uN(µ) is approximately 28 seconds on average
and varies depending on the value of the ionic strength used. Figure 6.1 shows the
lower cross-sections of the z-axis of the electrostatic potential u(x, y, 1).

6.2.2. Accuracy of FDM

We demonstrate the accuracy and reliability of the FDM before applying the RBM for
the solution of the PBE. This is because the accuracy of the RBM depends on that of
the underlying discretization technique. In this study, we consider six test examples to
validate the FDM which include a Born ion and five proteins consisting of between 380

1A PQR (or Position, charge (Q), and Radius) file is a protein data bank (PDB) file with the
temperature and occupancy columns replaced by columns containing the per-atom charge (Q)
and radius (R) using the pdb2pqr software. PQR files are used in several computational biology
packages, including APBS [6].
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Figure 6.1.: High-fidelity solutions (uN(µ)) at varying ionic strengths (i.e., µ = {0,
0.05, 0.15, 0.5}), respectively.

and 3400 atoms, respectively. We compare the FDM results with those of APBS for
electrostatic solvation free energy at different mesh refinements. Firstly, we consider
the Born ion which is a canonical example for polar solvation and whose analytical
solution is well known.

This analytical solution gives the polar solvation energy which results from the trans-
fer of a non-polarizable ion between two dielectrics [1], i.e.,

∆pGBorn =
q2

8πε0r
(

1

εs
− 1

εm
), (6.1)

where q is the ion charge, r is the ion radius, εs is the external dielectric coefficient
(e.g., water) and εm is the internal dielectric coefficient (e.g., vacuum). This model
assumes zero ionic strength. We consider a Born ion of unit charge, 3Å radius and
located at the origin ((0, 0, 0)). Here, εm = 1 and εs = 78.54. With these parameters,
the analytical solution in (6.1) is

∆pGBorn = −691.85(
q2

r
) = −230.62kJ/mol. (6.2)

We compare numerical computations using equation (2.34) for solvation energies in a
homogeneous (εm = εs = 1) and heterogeneous (εm = 1, εs = 78.54) dielectric environ-
ment with the analytical solution [1]. We use the following additional parameters. We
consider two different mesh sizes (or ∆x), which result in different numbers of degrees
of freedom (or N) as shown in Table 6.1. Numerical results using FDM are compared
with those of the exact solution (6.1) and APBS (which uses FEM). The results show
that the FDM method gives solutions which are consistent with those of the exact
solutions, as well as those of the APBS software package.
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Table 6.1.: Comparison of Born ion solvation energies in kJ/mol.

∆x N Solver Numerical Analytical Relative error

0.33 973 APBS -229.59 -230.62 4.47×10−3

FDM -232.86 -230.62 9.71×10−3

0.25 1293 APBS -230.00 -230.62 2.69×10−3

FDM -230.42 -230.62 8.67×10−4

Secondly, we compare the accuracy of FDM for the LPBE with the following set of
typical examples of use of LPBE and APBS in particular: Calculation of the total elec-
trostatic energy (including self-interaction energies) of a 22 residue, α-helical peptide
from the N protein of phage λ which binds to its cognate 19 nucleotide box B RNA
hairpin [52], fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake
venom [104], the electrostatic potential of a minimized FKBP protein from binding en-
ergy calculations of small ligands [27], a 180-residue cytokine solution NMR structure
of a murine-human chimera of leukemia inhibitory factor (LIF) [61], and the binding
energy of a balanol ligand to the catalytic subunit of the CAMP-dependent protein
kinase A, here the apo form of the enzyme [111]. The proteins and or complexes have
the following number of atoms (379, 1228, 1663, 2809, and 3423), respectively.

The electrostatic solvation free energies, ∆E are computed and shown in Table 6.2 for
varying grid resolutions ∆x. However, we here do not have the analytical electrostatic
energies for these proteins but rely on the accuracy of the APBS software for validation.
A compute cluster with 4 Intel Xeon E7-8837 CPUs running at 2.67 GHz (8 cores per
CPU) and 1 TB RAM, split into four 256 GB parts (each CPU controls one part) is
used to carry out the computations which require a huge amount of memory, so that
it allows for solving large-scale problems with N ≥ (3× 106).

Remark 6.1:

From Table 6.2, we can clearly see that the results of the FDM method agree well
with those of APBS in terms of convergence with respect to mesh refinement. Hence,
we conclude that we can test the RBM in conjunction with our FDM solver reliably.
We expect no differences when using a FEM solver like APBS, which would require
intruding the software. ♦
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6.3. Reduced basis approximation for the classical LPBE

Table 6.2.: Comparison of electrostatic solvation free energies ∆E, between FDM and
APBS for different proteins.

∆x N ∆E, FDM ∆E, APBS Relative error

1. Solvation energies of a 22 residue, α-helical peptide from the N protein of phage λ
which binds to its cognate 19 nucleotide box B RNA hairpin in kJ/mol. (379 atoms)

0.375 1293 -4557.71 -4546.52 2.46×10−3

0.320 1613 -4541.48 -4532.76 1.92×10−3

0.260 1933 -4522.48 -4516.85 1.24×10−3

2. Solvation energies of fasciculin 1, an anti-acetylcholinesterase toxin from green
mamba snake venom in kJ/mol. (1228 atoms)

0.465 1293 -5870.54 -5845.86 4.22×10−3

0.375 1613 -5684.85 -5664.85 3.53×10−3

0.320 1933 -5629.20 -5611.25 3.20×10−3

3. Solvation energies of a minimized FKBP protein from binding energy calculations
of small ligands in kJ/mol. (1663 atoms)

0.465 1293 -4419.04 -4403.88 3.44×10−3

0.375 1933 -4344.55 -4331.10 3.11×10−3

0.320 2253 -4292.54 -4288.08 1.04×10−3

4. Solvation energies of a 180-residue cytokine solution NMR structure of a murine-
human chimera of leukemia inhibitory factor (LIF) in kJ/mol. (2809 atoms)

0.450 1613 -9317.76 -9293.98 2.56×10−3

0.375 1933 -9270.05 -9247.28 2.46×10−3

0.280 2573 -9153.95 -9134.29 2.15×10−3

5. Solvation energies of CAMP-dependent protein kinase A, here the apo form of the
enzyme, in kJ/mol. (3423 atoms)

0.465 1293 -19742.36 -19681.32 3.10×10−3

0.375 1613 -19332.66 -19296.63 1.87×10−3

0.320 1933 -19039.86 -19014.04 1.36×10−3

6.3. Reduced basis approximation for the classical
LPBE

In this section, we evaluate the accuracy of the reduced basis method (RBM) for the
approximation of the high-fidelity solutions generated by the FDM for the five proteins
which were investigated in Section 6.2.2. We consider a cubic domain of 129 points and
a box length of 60 Å centered at the protein position for all the computations.

Figure 6.2 shows the decay of the error estimator and the true error during the greedy
algorithm at the current RB dimension i = 1, . . . , N . They corroborate the asymptotic
correctness property stated in Section 5.5, and it is evident that the error estimator is
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Figure 6.2.: Comparison of maximal error estimator and true error for the proteins in
Table 6.2, respectively.

an upper bound to the true error. We also observe a high convergence rate of the error
estimator with up to two orders of magnitude and the RB space is rich enough at only
six iterations of the greedy algorithm for the five proteins.

These error estimators are the maximal residual and relative maximal residual, re-
spectively, and are defined as, ∆max

N = max
µ∈Ξ
‖rN(uN ;µ)‖2, and ∆max

N /‖uN(µ∗)‖2, where

µ∗ = arg max
µ∈Ξ
‖rN(uN ;µ)‖2.

Note that we here set the inf-sup constant, σmin(AN(µ)) in (5.26) to unity ∀ µ ∈ Ξ
as in (5.27), because they are of order O(10−2). This makes the norm of the residual
in (5.27) a better error estimator than (5.26) for this specific problem.

In the greedy algorithm, we apply an error tolerance of ε = 10−3 and a training set
Ξ consisting of l = 11 samples of the parameter. From Figure 6.2, it is evident that
both the error estimator and the true error fall below the prescribed tolerances at the
final dimension of the ROM (i.e., N = 6).

A standard measure to determine the efficiency and the quality of the error estimator
is the so-called effectivity index [4] given by

eff :=
∆N(µ)

‖uN(µ)− uN(µ)‖2

, (6.3)

where ∆N(µ) is the error estimator and ‖uN(µ) − uN(µ)‖2 is the true error. The
effectivity index in (6.3) is required to be ≥ 1 for rigorosity and as close as possible to
unity for sharpness of the error estimator.

In Figure 6.3, we present the effectivity indices to demonstrate the quality and effi-
ciency of the error estimator in Figure 6.2. Since they are of order O(10) at the final
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Figure 6.3.: Effectivity indices to demonstrate the quality of the error estimators in
Figure 6.2, respectively.

RB dimension, we can claim that the error estimator is of good quality.

Figure 6.4 shows the error estimator and the true error of the finally constructed ROM
over µi = Ξ, for i = 1, ..., 11 samples for each protein as in Table 6.2, respectively. It is
evident that the error estimator for the final RB approximations of dimension N = 6
is indeed an upper bound of the true error and a trend that both quantities behave
similarly is clearly visible from the graphs. Consequently, the error estimators fall below
the greedy tolerance of 10−3.

Figure 6.5 is used to validate the true error in Figure 6.4, whereby 20 random values
of the parameter domain D which are different from those in the training set Ξ are
used. A common observation from these figures is that the true errors fall below
O(10−4), which is approximmately an order of magnitude below the error estimator.
The computational time taken to obtain the approximate solution uN(µ) in the online
phase is approximately 4.97× 10−3 seconds on average, for any parameter µ ∈ D.

Figure 6.6 demostrates the output error estimators for the generalized Born ion and
some of the protein molecules which were introduced in Section 6.2.2. We observe that
the dimension of the ROMs obtained by these output estimators are slighlty smaller
than those obtained in Figure 6.2.

6.3.1. Runtimes and computational speed-ups

Before we dive into the runtimes of the various phases of the RBM, we would like to
clarify some key notions of the two phases of the greedy algorithm, i.e., the offline
and online phases, respectively. The offline phase is subdivided into two parts, the
offline-offline phase, and the offline-online phase [59]. The offline-offline phase involves
computation of the snapshots and pre-computing the parameter-independent quanti-
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Figure 6.4.: Comparison of error estimator and true error for the final ROM for Ξ ∈ D
and for the proteins in Table 6.2, respectively.

Table 6.3.: Runtimes and speed-ups due to DEIM.

Runtime (seconds) and speed-up

Without DEIM With DEIM Speed-up

Offline-online phase 96.29 4.84 20

Assemble and solve ROM 8.36 9.91×10−3 844

ties. The offline-online phase involves computation of the error estimator and the RB
approximation. On the other hand, the pure online phase is where the final ROM has
been constructed after the accuracy of the reduced basis is fulfilled, and is independent
of the greedy algorithm. In this phase, the ROM can be solved for any parameter value
in the parameter domain, including those which are different from the training set.

Table 6.3 shows the runtimes and computational speed-ups obtained with the use of
DEIM approximation during the offline-online phase of the RBM at a single iteration
of the greedy algorithm and with the use of the RBM in solving the linear system. We
use a modest PC with the following specifications: Intel (R) Core (TM)2 Duo CPU
E8400 @ 3.00GHz with 8GB RAM. In this section, the PBE is applied to the protein
fasciculin 1.

Table 6.4 shows the runtimes of computing the FOM and the ROM at a given pa-
rameter value, respectively. The runtimes at different phases of the RBM are also
presented. Speed-up factors induced by solving the ROM are listed to visualize the big
difference between the FOM and the ROM. The ROM is much faster and takes a split
second to assemble and solve for any parameter value. In the offline phase of the RBM,
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Figure 6.5.: Comparison between the true error ‖uN(µ) − uN(µ)‖2 and the error esti-
mator at the final ROM for random parameters µ ∈ D for the proteins in
Table 6.2, respectively.

which comprises the greedy algorithm, the dominating cost is that of solving the linear
system of the FOM by AGMG (i.e., computing the snapshots) at every iteration of the
greedy algorithm. Miscellaneous in this case refers to the runtime to initialize the FDM,
including assembling the FOM. The total RBM runtime includes the miscellaneous and
offline runtimes.

Table 6.5 shows the runtimes of APBS and RBM for solving the FOM and the ROM
at any given parameter value, respectively. The speed-up factor of RBM w.r.t. the
APBS is also shown for different numbers of parameter values. It is evident that RBM
is much more efficient than APBS when solving the system for many input parameter
values (i.e. in a multi-query context). This is because we only need to solve a small
system of order N = 6 once the final ROM model has been constructed which takes
approximately 9.91× 10−3 seconds for each parameter value, whereas APBS solves the
FOM besides the initial system setup.

In a nutshell, to solve the LPBE for any parameter value with APBS, it takes 22.893
seconds, because the solver has to reconstruct the linear system. This implies that it
takes approximately 2, 289.3 seconds to compute the potential for 100 parameter values
(neglecting the runtime to modify the input files). This is more expensive than the
total RBM time of 96.12 seconds. On the other hand, it takes the RBM approximately
9.91× 10−1 seconds to solve the ROM of the LPBE for the same number of parameters
values (i.e., 100).

The RBM only solves the FOM N times during the expensive offline phase as stated
in Algorithm 5.4. Moreover, the RBM utilizes the precomputed system matrices and
vectors and only solves the ROM for the new parameter value, thus saving a significant
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Figure 6.6.: Comparison of error estimator and true output error for the Born ion,
proteins fasciculin 1, a 180-residue cytokine solution NMR structure of
a murine-human chimera of leukemia inhibitory factor, and a minimized
FKBP protein, respectively.

amount of computational costs during the online phase. This efficient implementation
of a new mathematical approach to solve the PBE holds great promise towards reducing
computational costs in a multi-query scenario and molecular dynamics simulation.

6.4. Numerical results for the regularized PBE

In this section, we first consider the free space electrostatic potential computed by the
modified Poisson equation PE and the RS tensor format based splitting scheme for the
Newton kernel. We compare the results with those of the traditional PE for various
biomolecules. In this case, the PBE can be reduced to the PE by considering the zero
ionic strength which implies that the function κ̄2(x̄) = 0, hence the Boltzmann distri-
bution term in (2.15) is annihilated. Consequently, homogeneous dielectric constants
of εm = εs = 1 are considered. Then we consider the numerical tests for the regularized
linear and nonlinear PBE such that κ̄2(x̄) > 0 and εs/εm ≈ 40.

We compute the electrostatic potentials using n × n × n 3D Cartesian grids, in a
box [−b, b]3 with equal step size h = 2b/(n + 1). Conventional computations by the
PBE/PE solver are limited to n = 257, on a PC with 8GB RAM due to the storage
needs of the order of O(n3).
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Table 6.4.: Runtimes and speed-ups for FOM, ROM and RBM.

Runtime (seconds) and speed-up

FOM ROM Speed-up

Solve linear system 11.88 4.97×10−3 7,616

Assemble and solve linear system 27.82 9.91×10−3 5,500

Runtime (seconds) for RBM phases

Miscellaneous Offline Online Total RBM

10.58 85.54 9.91×10−3 96.12

Table 6.5.: Runtimes for APBS and RBM.

Runtime (seconds) and speed-up for APBS and RBM

No. of parameters APBS RBM Speed-up

1 22.893 ≈ 96.12 0.24

10 228.93 ≈ 96.12 2.38

100 2,289.3 ≈ 96.12 24

1000 22,893 ≈ 106.12 215.75

Figure 6.7.: The free space potential for the Born ion computed by the APBS (left),
the FDM solver (middle) and the corresponding error (right).

6.4.1. Validating the accuracy of RS splitting for the free space
potential

First, we validate the FDM solver for the PE by comparing its solution with that of
the adaptive Poisson-Boltzmann solver (APBS) using the finite difference multigrid
calculations with PMG 2 option [8, 30]. Here, we consider a Born ion of unit charge,
unit (Å) radius and located at the origin ((0, 0, 0)). Figure 6.7 shows the single Newton
kernel for the Born ion, approximated by the PE on an n×n grid surface with n = 129
at the cross section of the volume box in the middle of the z-axis computed by the APBS
and the FDM solver and the corresponding error between the two solutions. The results
show that the FDM solver provides as accurate results as those of the APBS with a

2PMG is a Parallel algebraic Multigrid code for General semilinear elliptic equations.
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Figure 6.9.: The total free space electrostatic potential (left) and its long-range component
(right) computed by the regularized PE.

discrete L2 error of O(10−7) in the full solution. Similar results for varying proteins are
illustrated in [16].

Secondly, we compare the accuracy of the traditional PE model and of the PE model
modified by the RS tensor format for the approximation of the single Newton kernel.
Figure 6.8 shows the single Newton kernel on an n×n grid surface with n = 129 at the
cross section of the volume box in the middle of the z-axis computed by the canonical
tensor approximation obtained by sinc-quadratures and the corresponding errors by the
traditional PE model and the modified PE model computed by the FDM solver. We
notice that the solution of the modified PE model is of higher accuracy than that of
the traditional PE model because it captures the singularities exactly, see the central
region of Figure 6.8 (right).

In a similar vein, we consider the acetazolamide compound consisting of 18 atoms and
determine the accuracy of the traditional PE model vis a vis the PE model modified
by the RS tensor format. Figure 6.9 shows the total free space electrostatic potential
computed by the regularized PE and its long-range component, respectively, while
Figure 6.10 shows the error between the exact Newton potential and the classical PE
(left) and the regularized PE (right) computed on an n× n grid surface with n = 129.
It is clearly shown that the modified PE model provides highly accurate solutions as
compared to those of the traditional PE due to the accurate treatment of the solution
singularities by the RS tensor format.

Figure 6.8.: The Newton potential computed by the canonical tensor decomposition
(left), the error of its computation on the same grid by using the classical
PE (middle) and by the modified PE (right).
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6.4. Numerical results for the regularized PBE

Figure 6.10.: The error of the free space potential between the exact Newton potential sums
and the classical PE solution (left) and between the Newton potential sums
and the regularized PE solution (right).

Figure 6.11.: Demonstration of the solution singularities for the acetazolamide molecule cap-
tured by the canonical tensor approximation (left), by the modified PE model
(middle) and by the classical PE (right).

We notice, in addition, that the classical PE model does not capture accurately the
singularities in the electrostatic potential due to the numerical errors introduced by the
Dirac delta distribution and partly due to the smoothing effect caused by the spline
interpolation of the charges onto the grid. The modified PE model, on the other hand,
is able to capture the singularities due to the independent treatment of the singularities
by the RS tensor technique. This is clearly demonstrated in Figure 6.11.

6.4.2. The regularized Poisson equation (PE) on a sequence of
fine grids

Here, we illustrate the accuracy of the modified PE by calculating the free space elec-
trostatic potential on a sequence of fine grids and compare with the solution of the
exact Newton potential determined by the canonical tensor representation. We first
consider the aforementioned Born ion case and show the absolute error for the finest
Cartesian grid and the discrete L2 norm of the error for a sequence of Cartesian grids.
Figure 6.12 shows the absolute error of O(10−11) obtained on a 2573 Cartesian grid and
32 Å box length. Table 6.6 shows the decay of the discrete L2 norm of the error for a
sequence of grid refinements.

Next, we consider the acetazolamide molecule with 18 atoms. This molecule is used as
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Figure 6.12.: Absolute error between the solutions of the Newton potential and the
modified Poisson equation for the Born ion.

n 97 129 257

Discrete L2 norm 4.1176× 10−7 9.5516× 10−8 2.7975× 10−9

Table 6.6.: The discrete L2 norm of the error with respect to grid size for the Born ion.

a ligand in the human carbonic anhydrase (hca) protein-ligand complex for the calcula-
tion of the binding energy in the adaptive Poisson-Boltzmann software (APBS) package
[64] and the MATLAB program for biomolecular electrostatic calculations, (MPBEC)
[140]. The electrostatic potential is computed as in the previous case, employing the
same grid properties. The absolute error is shown in Figure 6.13 and the error behavior
with respect to mesh refinements is shown in Table 6.7.

Finally, we consider the protein fasciculin 1, with 1228 atoms, an anti-acetylcholinesterase
toxin from the green mamba snake venom [104]. Again, we compute the electrostatics
potential as in the previous case, but with 60 Å box length and a 2573 as the minimum
Cartesian grid because of a larger molecular size. The results provided in Figure 6.14
and Table 6.8 illustrate a similar trend of accuracy as in the previous test examples.
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Figure 6.13.: Absolute error between the solutions of the Newton potential sums and
the modified Poisson equation for the acetazolamide molecule.

Figure 6.14.: Absolute error between the solutions of the Newton potential sums and
the modified Poisson equation for the protein fasciculin 1.
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n 97 129 257

Discrete L2 norm 4.1176× 10−7 1.1936× 10−7 3.7003× 10−9

Table 6.7.: The discrete L2 norm of the error and the relative error with respect to grid size
for the acetazolamide molecule.

n 129 193 257

Discrete L2 norm 1.2919× 10−6 1.7395× 10−7 4.3060× 10−8

Table 6.8.: The discrete L2 norm of the error and the relative error with respect to grid size
for the protein fasciculin 1.

6.4.3. Accurate representation of the long-range electrostatic
potential by the RS tensor format

Here, we highlight the advantages of the RS tensor format in the low-rank approxi-
mation of the long-range component in the total potential sum. For this purpose, the
RHOSVD within the multigrid C2T transform [82] is used which provides computation
of the low-rank canonical/Tucker tensor representation of the long-range part at the
asymptotic cost of O(Nn). Here, N is the number of charges in the molecule while n
represents the grid dimension in a single direction.

Figure 6.15.: The error due to the low-rank approximation of the long-range component for
the 379 atomic molecule for n = 1293 (left), n = 2573 (middle) and n = 5133

(right) grids.
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6.4. Numerical results for the regularized PBE

Figure 6.16.: The error due to the low-rank approximation of the long-range component for
the 379 atomic molecule for n = 2573 grid at a lower tolerance.

Figure 6.15 shows an error of O(10−5) of the RS tensor format approximation com-
pared with the full size representation at various grid dimensions. These data corre-
spond to the long-range RS-rank equal to 10, with ε-truncation threshold chosen as
O(10−6) for the reference Newton kernel and O(10−7) for the C2T transform.

Figure 6.16 shows that the error is reduced by one order of magnitude, i.e. to
O(10−6), if we take stronger rank truncation criterion ε of an order less for both the
Newton kernel (i.e., O(10−7)) and for the C2T transform, O(10−8).

6.4.4. Finite difference results for the classical LPBE

In this section, we consider n⊗3 3D uniform Cartesian grids, in a box [−b, b]3 with
equal step size h = 2b/(n − 1) for computing the electrostatic potentials of the PBE
on a modest PC with the following specifications: Intel (R) Core (TM) i7− 4790 CPU
@ 3.60GHz with 8GB RAM. The FDM is used to discretize the PBE in this section
and the numerical computations are implemented in the MATLAB software, version
R2017b.

(a) LPBE solution by the FDM solver. (b) APBS vs FDM solution error.

Figure 6.17.: The electrostatic potential for the protein fasciculin 1 computed by the
FDM solver (left) and the error between the APBS and FDM solutions
(right) on 129⊗3 grid, at 0.15M ionic strength.

First, we validate our FDM solver for the classical LPBE by comparing its solution
with that of the APBS software package (version 1.5-linux64), which uses the multigrid
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(PMG) accelerated FDM [8]. Here, we consider the protein fasciculin 1, with 1228
atoms. The Figure 6.17 shows the electrostatic potential of the PBE on a n × n grid
surface with n = 129 at the cross-section of the volume box (60 Å) in the middle of
the z-axis computed by the FDM solver and the corresponding error between the two
solutions. Here, we use the ionic strength of 0.15M . The results show that the FDM
solver provides accurate results as those of the APBS with a discrete L2 error of O(10−4)
in the full solution.

The results for solvation free energy of protein varieties are presented in [16]. To
validate the claim in Remark 6.2, we provide in the Table 6.9, the comparison between
the total electrostatic potential energies ∆Gelec in kJ/mol, between the LPBE and
the nonlinear PBE (NPBE) computations on a sequence of fine grids using the APBS
software package.

Remark 6.2:

We reiterate that the solutions obtained from the LPBE and the nonlinear PBE are
very close to each other, even when the linearization condition does not hold [48].
This is especially manifested in protein molecules whose charge densities are small.
However, in biomolecules with large charge densities, for example, the DNA, signifi-
cant differences might be observed at the solute-solvent interface [47, 48]. Moreover,
the solution of the LPBE is usually used as the initial condition for the nonlinear
PBE. ♦

h N ∆Gelec, LPBE ∆Gelec, NPBE Relative error

0.465 1293 91 228.0575 91 227.8354 2.44×10−6

0.375 1613 130 606.0630 130 605.8448 1.67×10−6

0.320 1933 170 154.4401 170 154.1862 1.49×10−6

Table 6.9.: Comparison of the total electrostatic potential energies ∆Gelec in kJ/mol,
between the LPBE and the NPBE computations on a sequence of fine grids
for the protein fasciculin 1.

Remark 6.3:

Notice from the Table 6.9 that the electrostatic potential energies ∆Gelec increase
with decreasing grid/mesh size, h. This is caused by the short-range electrostatic
potential behaviour as the distance, ‖x̄‖ → 0, in 1/‖x̄‖. ♦

6.4.5. Numerical tests for linearized RPBE (LRPBE)

Here, we first demonstrate the change in the electrostatic potential between the Pois-
son equation, which solves for the free space electrostatic potential, and the LRPBE
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which solves for the electrostatic potential in a medium consisting of jumping dielectric
coefficients.

Figure 6.18.: The full electrostatic potential (left) and its long-range component (right) com-
puted by the LRPBE at 0.15 ionic strength for the acetazolamide molecule.

Figure 6.19.: The difference between the potential from linear PBE compared with that
calculated by the new RS regularized scheme at 0.15 ionic strength for the
acetazolamide molecule.

Figure 6.18 illustrates the full electrostatic potential computed for the acetazolamide
molecule using the linear RS-regularized PBE (left) computed by using the RS tensor
decomposition for the Dirac delta, and the long-range part of this potential (right).

Figure 6.19 shows the difference between the potential from linear PBE compared
with that calculated by the new RS regularized scheme, for the case of 0.15 ionic
strength. We observe that the computational error for the traditional regularization
scheme indicated in Figure 6.10 (left) for the case of free space collective potential is
almost of the same order of magnitude as that presented in Figure 6.19 for the case of
linearized PBE.
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Mesh size h Number of mesh points Discrete L2 error

2.5×10−1 110 592 5.11×10−2

1.25×10−1 884 736 1.25×10−2

6.25×10−2 7 077 888 3.04×10−3

3.125×10−2 56 623 104 7.32×10−4

Table 6.10.: Discrete L2 norm of the error between the solution to the LRPBE in (4.16)
and the analytical solution in (6.4) for a Born ion of unit charge and radius
R = 3 on a sequence of fine grids.

Remark 6.4:

We demonstrate the conspicuous difference between the RPE and the LPBE solutions
in Figure 6.9 and Figure 6.18, respectively, due to the effect of the inhomogeneous
(or jumping) dielectric coefficient and the ionic strength in the latter. As a result of
these coefficients, we can see that the short-range potential component of the LPBE
in Figure 6.18 (left) is halfed due to the change of εm from 1 in free space to 2 in
the solvated state, while the long-range potential component in Figure 6.9 scales
by approximately 1/80 in addition to the effect of the ionic strength as a damping
coefficient. ♦

6.4.5.1. Validation test for the LRPBE

To validate the RS tensor based LRPBE solver, we consider the analytical solution
of the Born ball model similar to that in [150]. However, in our model, we use the
centimeter-gram-second (CGS) units, see [67], instead of the SI (International standard)
units, in addition to the scaling differences for the constant 4π,

ψ(x̄) =

{
αz
εmd

+ αz
R

( 1
εs
− 1

εm
), if x̄ ∈ Ωm,

αz
εsd
, if x̄ ∈ Ωs,

(6.4)

where Ω = Ωm ∪ Ωs = [−6, 6]3, d = ‖x̄‖, α = 4π2ec × 108, εm = 2, εs = 78.54, z = 1 is
a unit charge, and R = 3 is the atomic radius of the Born ion.

The Table 6.10 illustrates the validation results for our LRPBE solver for the Born
ball model on a sequence of fine grids. The discrete L2 norm of the error demonstrates
good convergence of our LRPBE model. Note that Editha, one of the compute clusters
at the MPI in Magdeburg, was used to carry out the last computation in Table 6.10
due to its large memory requirement, i.e., 56 623 104 mesh points.

Remark 6.5:

A more complex validation test would be the Kirkwood model [88] in which a single
sphere containing multiple distributed point charges is considered. However, due to
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6.4. Numerical results for the regularized PBE

Atomic radii in Å

Atomic radius 0.00 1.00 1.40 1.50 1.70 1.85 2.00

Number of atoms 322 333 195 82 104 10 182

Table 6.11.: Atomic radii and the corresponding number of atoms for the constituent
atoms of the protein fasciculin 1.

the unrealistic treatment of the atoms (i.e. without atomic radii), the RS tensor
format cannot be applied to this case. Note that the RS tensor approach requires
explicit treatment of atoms in a molecule with non-intersecting atomic radii [17]. ♦

6.4.6. Accuracy of the nonlinear RPBE based on the RS tensor
format

Here, we provide the results for the calculation of electrostatic potential for the non-
linear RPBE (NRPBE) based on the RS tensor format and compare the results with
those of the traditional NPBE for various proteins. This is because the nonlinear RPBE
implementation in the APBS package does not currently function for reasons not spec-
ified. On the other hand, the LRPBE variant is not optimized for the APBS package
and users are recommended to use the multigrid-based methods (which use PMG) for
improved performance. Therefore, we cannot compare the results for the regularized
PBE models between APBS and the RS tensor-based model.

First, we consider the protein fasciculin 1 consisting of 1228 atoms of varying atomic
radii as shown in the Table 6.11. Notice that 322 of the total atoms have zero radius
(e.g. polar or non-polar hydrogen atoms), which implies that we must annihilate them
from the RS tensor format calculations so that they are not assigned Newton kernels.
Therefore, we consider the smallest atom in the protein as that with 1 Å radius, (i.e.,
the Hydrogen atom). Recall from the Figure 3.7 that the short-range component of the
canonical vectors has effective support in a unit Å radius.

We provide the comparisons between the electrostatic potential of NRPBE, based on
the RS tensor format, with that of the traditional NPBE. The Figure 6.20 shows the
solutions from the two models and the corresponding error on 129⊗3 uniform Cartesian
grid and a 60Å domain length, at 0.15M ionic strength.

Remark 6.6:

Notice that the error is predominant within the molecular region, where the solution
is singular. However, in the solute region, which is dominated by the long-range
regime, the error is small, in O(10−5). ♦

109



6. Numerical examples

Figure 6.20.: Absolute error between the solutions of the traditional NPBE and the
NRPBE for the protein fasciculin 1.

The Figure 6.21 provides the cross-sectional view of the electrostatic potential shown
in the Figure 6.20 in order to demonstrate the accuracy of the solution singularities in-
herent in the NRPBE model over the traditional NPBE model. Notice that the NRPBE
is capable of capturing exactly, the short-range component of the total potential sum
because this part is precomputed analytically thereby avoiding the numerical errors
occasioned by the traditional NPBE.

Remark 6.7:

The Figure 6.21b contains densely populated singularities/cusps as a result of explicit
treatment of each atomic charge by the Newton kernel, whereas the Figure 6.21a, as
a result of the smoothing/smearing effect of the atomic charges by the cubic spline
interpolation, contains sparsely populated singularities most of which are not sharp.♦

Secondly, we provide results for a 180-residue cytokine solution NMR structure of
a murine-human chimera of leukemia inhibitory factor (LIF) [61] consisting of 2809
atoms. The corresponding variation in atomic radii and their frequencies are shown in
Table 6.12. Figure 6.22 shows the comparison between the electrostatic potential of
NRPBE, with that of the classical NPBE and the corresponding error on a 129⊗3 grid
and a 65Å domain length, at 0.15M ionic strength.
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6.4. Numerical results for the regularized PBE

Atomic radii in Å

Atomic radius 0.2245 0.4500 0.9000 1.3200 1.3582 1.4680 ≥ 1.7000

Frequency 315 6 6 1032 54 6 1390

Table 6.12.: Atomic radii and frequencies for the constituent atoms of a 180-residue
cytokine solution NMR structure of a murine-human chimera of leukemia
inhibitory factor (LIF).

(a) Cross-sectional view of NPBE solu-
tion in the Figure 6.20.

(b) Cross-sectional view of NRPBE so-
lution in the Figure 6.20.

Figure 6.21.: The cross-sectional view of the electrostatic potentials in the Figure 6.20.

Figure 6.22.: Absolute error between the solutions of the traditional NPBE and the
NRPBE for a 180-residue cytokine solution NMR structure of a murine-
human chimera of leukemia inhibitory factor (LIF).
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6. Numerical examples

(a) Cross-sectional view of NPBE solution
in the Figure 6.20.

(b) Cross-sectional view of NRPBE solu-
tion in the Figure 6.20.

Figure 6.23.: The cross-sectional view of the electrostatic potentials in the Figure 6.22.

Remark 6.8:

In a similar vein, we notice in the Figure 6.23 that the error is predominant within
the molecular region, where the solution is singular. The scaling of the total potential
demonstrates that the solution singularity in the NRPBE model is more accurately
captured than in the traditional NPBE model. It is also worth mentioning that the
small atomic radii, (< 0.9Å), in the Table 6.12 are treated independently in terms of
the RS tensor splitting of the short- and long-range potentials. ♦

6.4.7. Runtimes and computational speed-ups

We compare the runtimes of computing both the classical and regularized PBE models
in the Table 6.13 for the protein fasciculin 1 in an n3 = 1293 domain of 60 Å length at
an ionic strength of 0.15M . Notice that the runtimes for the LPBE and the LRPBE are
almost equal because the linear systems are solved by the same solver (i.e., AGMG). On
the other hand, the runtime for the NRPBE is less compared to the NPBE because the
former system converges (for all values of the ionic strength) in the AINSOLV solver
when the residual and Jacobian of (4.28) are used as inputs.
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6.5. Reduced basis approximation for the NRPBE

Runtime (seconds) and speed-up

LPBE LRPBE Speed-up

Solve linear system 5.2608 6.3421 ≈ 1

Total runtime 15.2507 16.4715 ≈ 1

NPBE NRPBE Speed-up

Solve nonlinear system 17.9663 6.3000 2.852

Total runtime 34.4014 20.6976 1.662

Table 6.13.: Runtimes and speed-ups for LPBE, LRPBE, NPBE, and NRPBE.

6.5. Reduced basis approximation for the NRPBE

Here, we determine the accuracy and computational efficacy of the RBM for the approx-
imation of the truth high-fidelity solutions of the NRPBE for biomolecular modeling.
We set the solute and solvent dielectric coefficients as εm = 2, and εs = 78.54, respec-
tively, and employ the parameter values from the training set Ξ ∈ D = [0.05, 0.15] with
a sample size of l = 11, greedy tolerance tol = 10−10 for Algorithm 5.4 to generate the
projection matrix VN .

In the numerical tests, the molecular charge density function (singular source term)
for the classical NPBE and for the regularized Dirac density function for the NRPBE
are obtained from PQR files which are generated from the following biomolecules with
varying sizes that depend on the number of atoms:

(a) The acetazolamide molecule consisting of 18 atoms, which is used as a ligand in
the human carbonic anhydrase (hca) protein-ligand complex for the calculation of
the binding energy [64, 140].

(b) fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom
[104] consisting of 1228 atoms.

(c) A 180-residue cytokine solution NMR structure of a murine-human chimera of
leukemia inhibitory factor (LIF) [61] consisting of 2809 atoms.

Remark 6.9:

Since the solution of the PBE has a slow polynomial decay in 1/‖x̄‖, it is paramount
that large domains, approximately 3-times the size of the biomolecule be used in
order to accurately approximate the boundary conditions [67]. In this regard, we use
domains of lengths (32Å)3, (60Å)3 and (65Å)3, respectively, for the aforementioned
biomolecules. Here, Å denotes the angstrom unit of length. ♦

To begin with, we demonstrate the solution components of the full order model
(FOM) of the NRPBE via the RS tensor format for the protein fasciculin 1 in case
(b), in a uniform Cartesian grid of 129⊗3 and a 60Å domain length. Figure 6.24 shows
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6. Numerical examples

Figure 6.24.: The long-range (bottom left), short-range (top left), and total electrostatic
potentials (right) for fasciculin 1.

the short- and long-range components of the target electrostatic potential, which are
computed analytically from the CCT tensor (3.37), and numerically via the NRPBE
in (4.16), respectively, and the corresponding total electrostatic potential.

The behaviour in the scaling among the three electrostatic potentials in Figure 6.24
shows that the total potential on the right-hand side inherits the largest potential value
of 0.5 from the short-range component (top left), while the smallest value of O(10−5)
is obtained from the long-range component (bottom left) towards the boundary of the
domain.

Remark 6.10:

The main computational advantage of applying the RBM technique to the NRPBE is
that the RB approximation is only applied to the smooth long-range component of the
potential, see Figure 6.24 (bottom left), thereby avoiding the singularities inherent
in the short-range component that are known to cause numerical difficulties. Hence
the resultant RB approximation is expected to be of higher accuracy. ♦

Consider the NRPBE system generated by all the three cases (a), (b) and (c), in
uniform Cartesian grids of 97⊗3 for case (a) and 129⊗3 for cases (b) and (c), respectively.
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6.5. Reduced basis approximation for the NRPBE

We show in Table 6.14, the decay of the maximal error estimator, defined as

∆max
N (µ) = max

µ∈D
‖rN(ûrN ;µ)‖2,

and the true error ‖urN(µ) − ûrN(µ)‖2, during the greedy algorithm at the current RB
dimension i = 1, . . . , N for all of these cases.

Note that from Table 6.14, the ROM provides highly accurate approximations, close
to machine precision (O(10−15)) for the NRPBE, for all the biomolecular cases as
demonstrated by the true error in the second iteration. This is due to the smooth-
ness of the long-range electrostatic potential, which enhances rapid and accurate model
reduction process and facilitates, in general, low-rank approximation.

Next, we validate the final ROM at 100 random µ ∈ D in Figure 6.25. It is clear
that the true error of the ROM is still below the tolerance for all 100 µ ∈ D.

Biomolecule
Error at iteration 1 Error at iteration 2

N
∆max
N (µ) True error ∆max

N (µ) True error

Case (a) 5.06×10−6 1.27×10−8 3.03×10−12 3.04×10−15 2

Case (b) 1.07×10−5 8.92×10−8 3.69×10−12 2.02×10−14 2

Case (c) 3.26×10−5 1.45×10−7 2.06×10−11 3.20×10−14 2

Table 6.14.: The comparison between the maximal error estimator ∆max
N (µ) and the

true error for the NRPBE during the greedy iteration at the current RB
dimension i = 1, . . . , N for the biomolecules in cases (a) to (c).

True error ∆N(µ) tol

20 40 60 80 100
10−16

10−12

10−8

µ ∈ D

(a) Error for case (a).

20 40 60 80 100
10−16

10−12

10−8

Random µ ∈ D

(b) Error for case (b).

20 40 60 80 100

10−13

10−11

10−9

µ ∈ D

(c) Error for case (c).

Figure 6.25.: Comparison between the error estimator and the true error for the NRPBE
for the cases (a) to (c) for the final ROM at 100 random (varying) param-
eter values µ ∈ D.
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6.5.1. Comparison of the RB approximation accuracy between the
NRPBE and the NPBE

In this section, we demonstrate via the RB approximation, that the NRPBE model
is more accurate and computationally efficient than the classical NPBE. In a similar
style as in Section 6.5, we consider the biomolecules in cases (a) to (c) on the corre-
sponding domain lengths and grid dimensions. We demonstrate the accuracy of the RB
approximation for the classical NPBE model in order to compare it with the NRPBE
model.

We begin by demonstrating in Figure 6.26, the comparison of the error decay between
the maximal error estimator ∆max

N (µ) and the true error for the classical NPBE during
the greedy iteration at the current RB dimension i = 1, . . . , N for the biomolecules in
cases (a) to (c).

True error ∆N(µ)

1 2 3 4 5
10−6

10−1

104

Reduced Dimension N

(a) Error for case (a).

2 4 6
10−6

10−1

104

Reduced Dimension N

(b) Error for case (b).

2 4 6
10−5

10−1

103

Reduced dimension N

(c) Error for case (c).

Figure 6.26.: The comparison between the maximal error estimator ∆max
N (µ) and the

true error for the classical NPBE during the greedy iteration at the current
RB dimension i = 1, . . . , N for the biomolecules in cases (a) to (c).
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6.5. Reduced basis approximation for the NRPBE

True error ∆N(µ) tol

20 40 60 80 100
10−8

10−5

10−2

Random µ ∈ D

(a) Error for case (a).

20 40 60 80 100
10−8

10−5

10−2

Random µ ∈ D

(b) Error for case (b).

20 40 60 80 100

10−5

10−3

Random µ ∈ D

(c) Error for case (c).

Figure 6.27.: Comparison between the error estimator and the true error for the classical
NPBE for the cases (a) to (c) for the final ROM at 100 random (varying)
parameter values µ ∈ D.

We notice that the RBM constructs a small ROM (i.e., N = 2) of high accuracy
(O(10−12)) for the NRPBE in Table 6.14 because of the regularized nature of the model,
the RBM applied to the classical NPBE, nevertheless, generates a ROM of dimension
N = 6 at the accuracy of O(10−4) for most biomolecules in Figure 6.26 [16, 96]. This
is because in the latter case, the short-range component of the electrostatic potential
impedes the reduction process due to the sharp cusps or singularities which are hard
to capture in the ROM. Furthermore, case (a) has a slightly smaller ROM dimension
due to its small number of atoms as compared to the rest, hence its small number of
solution singularities (cusps) to be captured in the ROM.

The accuracy of the RB approximation of the classical NPBE in Figure 6.27 is much
lower than that of the NRPBE in Figure 6.25 due to the inaccurate approximation of
the short-range component inherent in the former. This demonstrates the efficacy of
the regularization scheme based on the RS tensor technique. The oscillations in the
error in Figure 6.27 also justifies the irregularity of the singular solution, which impedes
the model reduction process.

6.5.1.1. Runtimes and computational speed-ups

We compare the computational runtime of computing both the classical and regularized
NPBE models as well as that of the corresponding ROM (using the RBM) in Table 6.15.
The respective PBE models were applied to the protein fasciculin 1. Given a fixed value
of the parameter µ, Table 6.15 compares the runtimes for solving the FOM (using the
FDM), constructing the ROM (using the RBM), and solving the ROM (using direct
methods), for the classical LPBE and NPBE with those of the regularized LRPBE and
NRPBE, respectively. It is clear that the RBM spends more time in the offline phase of
the greedy algorithm to compute snapshots for the classical NPBE than on the RPBE
model, see Figure 6.26 and Table 6.14. This is mainly because of the presence of rapid
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Runtime (seconds) for the PBE and the RPBE

LPBE NPBE LRPBE NRPBE

FOM 17.68 34.40 22.83 28.30

RBM 107.98 238.78 90.04 76.38

ROM 2.22×10−2 2.40×10−2 2.10×10−3 6.59×10−3

Table 6.15.: Runtimes for the FOM, RBM and ROM for the linear and nonlinear vari-
ants of both the classical and the regularized PBE models.

Runtime (seconds) and speed-up using the FDM and the RBM

No. of parameters FOM for NRPBE RBM for NRPBE Speed-up

1 28.30 76.38 0.37

10 ≈ 283 ≈ 76.44 3.70

100 ≈ 2830 ≈ 77.04 36.73

1000 ≈ 28300 ≈ 82.97 341.09

Table 6.16.: Comparison of the runtimes and speed-ups between the FOM and the RBM
for the NRPBE in a multiparameter context.

singularities in the PBE solution, which provides an onerous task in the construction
of the ROM.

Consequently, Table 6.16, shows that solving the FOM for the NRPBE by the clas-
sical numerical techniques (in this case, the FDM) is sufficient and computationally
efficient only for a single parameter value. However, for many varying parameter val-
ues, the RBM is more efficient because it constructs only a small ROM once, which
can then be solved fast to obtain the solutions at any values of the parameter. For
instance, for 1000 different parameter values, the ROM runtime is ≈ 6.59 × 10−3sec,
leading to a total runtime of ≈ 82.97sec to solve the NRPBE using the RBM technique
instead of ≈ 28300sec by the FDM solver. Note that the runtimes for the 1000 varying
parameter values for the FOM are mere approximations based on that of the single
parameter value, since simulating the FOM for so many times is impractical.

6.6. Conclusions

In this chapter, we have presented the numerical approximation of both the classical
and the regularized Poisson-Boltzmann equations and demonstrated that the latter is
a very accurate model due to the avoidance of the rapid singularities in the numerical
approximation. The reduced basis approximation also demonstrates higher accuracies
and reduced computational costs (i.e., runtimes) for the regularized PBE model.
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CHAPTER 7

CONCLUSIONS AND OUTLOOK
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7.1. Conclusions

This thesis has been devoted to the efficient numerical solution of the Poisson-Boltzmann
equation for calculation of electrostatics in large molecular systems. The main results
of this work can be broadly categorized into two parts. First, we have demonstrated
that the range-separated (RS) tensor format can be gainfully applied as a solution
decomposition technique for the PBE by eliminating the numerical challenge arising
from the strong singularities, described by the Dirac delta distributions. In this trea-
tise, we emphasize that this problem can be efficiently circumvented by replacing the
Dirac delta distribution with a smooth long-range function. Furthermore, as the only
requirement in this approach is a simple modification of the singular charge density of
the PBE in the molecular region Ωm, it does not change the FEM/FDM system matrix.

The efficacy of the new tensor-based regularization scheme for the PBE is estab-
lished on the unprecedented properties of the grid-based RS tensor splitting of the
Dirac delta distribution. The main computational benefits are due to the localization
of the modified right-hand side within the molecular region and automatic maintaining
of the continuity of the Cauchy data on the solute-solvent interface. Another advan-
tage is that our computational scheme only includes solving a single system of algebraic
equations for the smooth long-range (i.e., regularized) part of the collective potential
discretized by FDM. The total potential is obtained by adding this solution to the
directly precomputed low-rank tensor representation for the short-range contribution,
resulting in a total potential sum of high accuracy. The various numerical tests illus-
trate the main properties of the presented scheme. For example, it is demonstrated in
the numerical results that the classical PBE model does not accurately capture the so-
lution singularities which emanate from the short-range component of the total target
electrostatic potential in the numerical approximation.

Secondly, we apply the reduced basis method (RBM) and the discrete empirical in-
terpolation method (DEIM) to leverage this significant property of the regularized PBE
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by constructing a regularized ROM at extremely low computational costs as compared
to that of the classical variant. This avoids constructing a ROM which comprises of
the highly singular component of the electrostatic potential, thereby reducing the er-
rors in the numerical approximation. The total potential is obtained by adding the
regularized component (solution of the ROM), which is lifted (by projection) to the
high-fidelity space, N, to the directly precomputed canonical tensor representation of
the short-range component of the Newton potential sum.

7.2. Outlook

Finally, we summarize that the regularization scheme presented in this thesis has ca-
pabilities for various generalizations which can be effectively implemented with minor
changes in the RS tensor decompositions. We notice the following directions:

First, we do not provide detailed experiments to corroborate with the actual elec-
trostatic free energies and forces of well-known biomolecules. This requires thorough
investigations and provision of supporting literature, which is not in the scope of this
thesis.

Secondly, the error bounds for the RBM are still a critical issue for the PBE. This is
because the coefficient matrix A of the PBE system Au = b has small eigenvalues of the
order of O(10−2), which impedes the construction of tight error bounds. In this thesis,
we use the norm of the residual as the corresponding a posteriori error estimator.
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APPENDIX A

APPENDICES

Standard definitions

In this appendix, we state some standard important definitions and theorems that
have been used in Section 2.3.1 and Section 2.3.2. For more details and proofs, see
[12, 33, 91, 136].

Definition A.1 (Norm):

A norm on a vector space X is a function

‖ · ‖ : X → R+ := [0,∞); x 7→ ‖x‖

that satisfies, ∀ x, y ∈ X and α ∈ F,

(i) ‖x‖ = 0 ⇐⇒ x = 0 (faithfulness),

(ii) ‖αx‖ = |α|| : ‖x‖ (homogeneity),

(iii) ‖x+ y‖ ≤ ‖y‖+ ‖y‖ (subadditivity).

A seminorm on X is a function p : X → R+ that satisfies condions (ii) and (iii)
above. ♦

Definition A.2 (A normed vector space):

A vector space X with a norm ‖ · ‖. We denote the norm on the vector space X by
‖ · ‖X . ♦
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Definition A.3 (Banach space):

A normed vector space (E, ‖ · ‖) that is complete, that is, every Cauchy sequence in
E is convergent, where E is equipped with the metric

d(x, y) := ‖x− y‖

. ♦

Definition A.4 (Bounded (linear) operator):

Let X be a normed vector space; ∀r ∈ R+ let Xr denote the closed ball in X with
radius r and center the origin:

Xr := {x ∈ X ‖x‖ ≤ r}.

A bounded linear operator from X to Y is a linear transformation T : X → Y such
that the operator norm ‖T‖ is finite, where

‖T‖ := inf{M ∈ R+ : ‖Tx‖ ≤M‖x‖ ∀ x ∈ X}
= sup{‖Tx‖ : x ∈ X1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}. ♦

Definition A.5 (Convex set):

A subset of a vector space is convex if tC+(1−t)C ⊆ C, ∀t ∈ (0, 1), i.e., tx+(1−t)y ∈
C, ∀x, y ∈ C and t ∈ (0, 1). This condition implies geometrically that every line
segment with endpoints in C lies in C. ♦

Definition A.6 (Functional):

Let S be a set of functions. Let f : S → R be a real valued function. Such functions
are known as functionals. Simply put, a functional is a real valued function whose
domain is a set of functions. ♦

Definition A.7 (Extremizing function):

A function for which the functional f is maximum or minimum. The value of the
functional at the extremizing function is known as extremum. ♦
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Definition A.8 (Spaces of continuous functions):

Let k ∈ Z+. We define the space Ck(Ω̄) as

Ck(Ω̄) ≡ {υ|Dαυ is bounded and uniformly continuous on Ω, ∀α s.t. 0 ≤ |α| ≤ k}.

Then Ck(Ω̄) is a Banach space (i.e., a complete normed linear space) with norm

‖υ‖Ck(Ω̄) = max
0≤|α|≤k

sup
x∈Ω
|Dαυ(x)|.

♦

Definition A.9 (Lebesgue spaces):

Let p ≥ 1. The Lebesgue space Lp(Ω) is defined as

LP (Ω) ≡ {υ s.t. ‖υ‖LP (Ω) <∞}. ♦

Definition A.10 (Sobolev spaces):

Let k ∈ Z+ and p ≥ 1. The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) = {υ s.t. Dαυ ∈ Lp(Ω), ∀ α s.t. |α| ≤ k}. ♦

Remark A.11:

� Note that L2(Ω)(≡ H0(Ω) is the only Lebesgue space that is a Hilbert space.

� For the case k = 0, the Lebesgue spaces are included in the Sobolev spaces,
that is, W 0,p(Ω) ≡ Lp(Ω) and the case p = 2 corresponds to a family of Hilbert
spaces. ♦

Definition A.12 (Poincaré inequality):

Let p be such that 1 ≤ p <∞ and Ω a subset with at least one bound. Then there
exists a constant C depending only on p and Ω such that for every u ∈ W 1,p

0 (Ω)

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω). ♦
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Standard theorems

Theorem A.13 (Riesz Represenation Theorem):

Suppose l be a bounded linear functional on a Hilbert space H. Then there exists a
unique vector g ∈ H such that

l(f) = 〈g, f〉 ∀f ∈ H, and ‖l‖∗ = ‖g‖. ♦

Theorem A.14 (Lax-Milgram Theorem):

Let H be a real Hilbert space, let the bilinear form A(u, υ) be bounded and coercive
on H ×H, and let F (u) be a bounded linear functional on H. Then there exists a
unique solution to the problem:

Find u ∈ H s.t. A(u, υ) = F (υ) ∀ υ ∈ H. ♦

Lemma A.15 (Fatou’s lemma):

Given a measure space (Ω,Σ, µ) and a set X ∈ Σ, let {fn}∞n=1 be a sequence of
(Σ,BR≥0

)- measurable nonnegative functions fn : X 7→ [0,+∞]. Define the function
f : X 7→ [0,+∞] by setting

f(x) = lim inf
n→∞

fn(x),

for every x ∈ X. Then f is (Σ,BR≥0
)- measurable, and∫

X

fdµ ≤ lim inf
n→∞

∫
X

fndµ. ♦
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[125] Zoran Radić, Paul D. Kirchhoff, Daniel M. Quinn, J. Andrew McCammon, and
Palmer Taylor. Electrostatic influence on the kinetics of ligand binding to acetyl-
cholinesterase: Distinctions between active center ligands and fasciculin. J. Biol.
Chem., 272(37):23265–23277, 1997. doi:10.1074/jbc.272.37.23265.

[126] W. Rocchia. Poisson-Boltzmann equation boundary conditions for bi-
ological applications. Math. Comput. Model., 41(10):1109–1118, 2005.
doi:10.1016/j.mcm.2005.05.006.

[127] W. Rocchia, E. Alexov, and B. Honig. Extending the applicability of the nonlinear
Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions.
J. Phys. Chem., 105(28):6507–6514, 2001. doi:10.1021/jp010454y.

[128] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation
and a posteriori error estimation for affinely parametrized elliptic coercive partial
differential equations. Archives of Computational Methods in Engineering, 15(3):
229–275, 2008. doi:10.1007/s11831-008-9019-9.

134

http://dx.doi.org/10.1021/jp050431+
http://dx.doi.org/10.1021/ct900381r
http://dx.doi.org/10.1007/978-3-319-15431-2
http://dx.doi.org/10.1074/jbc.272.37.23265
http://dx.doi.org/10.1016/j.mcm.2005.05.006
http://dx.doi.org/10.1021/jp010454y
http://dx.doi.org/10.1007/s11831-008-9019-9


[129] Henrik Sandberg, Bart Besselink, and Madhu Belur. Introduction to Model Order
Reduction. Lecture notes, KTH Royal Institute of Technology.

[130] Wilhelmus Schilders. Introduction to Model Order Reduction. In Wilhelmus H. A.
Schilders, Henk A. van der Vorst, and Joost Rommes, editors, Model Order Re-
duction: Theory, Research Aspects and Applications, pages 3–32. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-78841-6. doi:10.1007/978-
3-540-78841-6 1.

[131] Emek Seyrek, Paul L. Dubin, Christophe Tribet, and Elizabeth A. Gamble. Ionic
strength dependence of protein-polyelectrolyte interactions. Biomacromolecules,
4:273–282, 2003. doi:10.1021/bm025664a.

[132] K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules:
theory and applications. Annu. Rev. Biophys. Chem., 19:301–332, 1990.
doi:10.1146/annurev.bb.19.060190.001505.

[133] A. I. Shestakov, J. L. Milovich, and A. Noy. Solution of the nonlinear Poisson-
Boltzmann equation using pseudo-transient continuation and the finite element
method. Commun. Comput. Phys., 247:62–79, 2002. doi:10.1006/jcis.2001.8033.

[134] A.K. Smilde, R. Bro, and P. Geladi. Multi-way Analysis with Applications in the
Chemical Sciences. Wiley, 2004.

[135] M. Stein, R. R. Gabdoulline, and R. C. Wade. Cross-species analysis of the gly-
colytic pathway by comparison of molecular interaction fields. Molecular Biosys-
tems, 6:162–174, 2010.

[136] Gerald Teschl. Topics in Real and Functional Analysis. American Mathematical
Society, Providence, Rhode Island, 2019.

[137] A.Y. Toukmaji and J.A. Board. Ewald summation techniques in perspective: a
survey. Comput. Phys. Commun., 95:73–92, 1996.

[138] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31:279–311, 1966.

[139] L.R. Tucker. Implications of Factor Analysis of three-way Matrices for Measure-
ment of Change. In C. W. Harris, editor, Problems in Measuring Change, pages
122–137. University of Wisconsin Press, 1963.

[140] S. Vergara-Perez and M. Marucho. MPBEC, a Matlab program for biomolec-
ular electrostatic calculations. Comput. Phys. Commun., 198:179–194, 2016.
doi:10.1016/j.cpc.2015.08.029.

[141] S. Volkwein. Model Reduction using Proper Orthogonal Decomposition. Lecture
notes, University of Konstanz, 2013.

[142] R.C. Wade, R.R. Gabdoulline, and F. De Rienzo. Protein interaction property
similarity analysis. Int. J. Quantum Chem., 83:122–127, 2001.

135

http://dx.doi.org/10.1007/978-3-540-78841-6_1
http://dx.doi.org/10.1007/978-3-540-78841-6_1
http://dx.doi.org/10.1021/bm025664a
http://dx.doi.org/10.1146/annurev.bb.19.060190.001505
http://dx.doi.org/10.1006/jcis.2001.8033
http://dx.doi.org/10.1016/j.cpc.2015.08.029


A. Bibliography

[143] J. Wang and R. Luo. Assessment of linear finite difference Poisson-Boltzmann
solvers. J. Comput. Chem., 31:1689–1698, 2010. doi:10.1016/j.cpc.2015.08.029.

[144] Xianwei Wang, Yang Li, Ya Gao, Zejin Yang, Chenhui Lu, and Tong Zhu. A quan-
tum mechanical computational method for modeling electrostatic and solvation
effects of protein. Scientific Report, 8(1):1–10, 2018. doi:10.1038/s41598-018-
23783-8.

[145] J. Warwicker and H. C. Watson. Calculation of the electric potential in the
active site cleft due to α-helix dipoles. J. Mol. Biol., 157(4):671–679, 1982.
doi:10.1016/0022-2836(82)90505-8.

[146] B.A. Wells and A.L. Chaffee. Ewald summation for molecular simulations. J.
Chem. Theory Comput., 11:3684–3695, 2015.

[147] Wikibooks. Structural biochemistry/proteins/x-ray crystallography.
https://en.wikibooks.org/wiki/Structural_Biochemistry/Proteins/

X-ray_Crystallography, 2016.

[148] D. Wirtz, D. C. Sorensen, and B. Haasdonk. A posteriori error estimation for
DEIM reduced nonlinear dynamical systems. SIAM J. Sci. Comput., 36(2):A311–
A338, 2014. doi:10.1137/120899042.

[149] D. Xie. New solution decomposition and minimization schemes for Poisson-
Boltzmann equation in calculation of biomolecular electrostatics. J. Comput.
Phys., 275:294–309, 2014. doi:10.1016/j.jcp.2014.07.012.

[150] D. Xie and J. Ying. A new box iterative method for a class of nonlinear interface
problems with application in solving Poisson-Boltzmann equation. J. Comput.
Appl. Math., 307:319–334, 2016. doi:10.1016/j.cam.2016.01.005.

[151] Dexian Xie. New solution decomposition and minimization scheme for Poisson-
Boltzmann equation in calculation of biomolecular electrostatics. J. Comput.
Phys., 275:294–309, 2014.

[152] Yao Yue, Lihong Feng, and Peter Benner. Interpolation of Reduced-Order Models
Based on Modal Analysis. In 2018 IEEE MTT-S International Conference on
Numerical Electromagnetic and Multiphsics Modeling and Optimization, pages
1–4. IEEE, 2018.

[153] M. Zhanfeng and H. Chao. Structure-preserving balanced truncation for flexible
spacecraft using cross gramian. Journal of Beijing University of Aeronautics
and Astronautics, 34(12):1437–1440, 2008. URL en.cnki.com.cn/Article_en/

CJFDTOTAL-BJHK200812017.htm.

[154] H. X. Zhou. Boundary element solution of macromolecular electrostatics: In-
teraction energy between two proteins. Biophys. J., 65(2):955–963, 1993.
doi:10.1016/S0006-3495(93)81094-4.

136

http://dx.doi.org/10.1016/j.cpc.2015.08.029
http://dx.doi.org/10.1038/s41598-018-23783-8
http://dx.doi.org/10.1038/s41598-018-23783-8
http://dx.doi.org/10.1016/0022-2836(82)90505-8
https://en.wikibooks.org/wiki/Structural_Biochemistry/Proteins/X-ray_Crystallography
https://en.wikibooks.org/wiki/Structural_Biochemistry/Proteins/X-ray_Crystallography
http://dx.doi.org/10.1137/120899042
http://dx.doi.org/10.1016/j.jcp.2014.07.012
http://dx.doi.org/10.1016/j.cam.2016.01.005
en.cnki.com.cn/Article_en/CJFDTOTAL-BJHK200812017.htm
en.cnki.com.cn/Article_en/CJFDTOTAL-BJHK200812017.htm
http://dx.doi.org/10.1016/S0006-3495(93)81094-4


EHRENERKLÄRUNG
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